No Arabic abstract
This work considers the problem of computing the CANDECOMP/PARAFAC (CP) decomposition of large tensors. One popular way is to translate the problem into a sequence of overdetermined least squares subproblems with Khatri-Rao product (KRP) structure. In this work, for tensor with different levels of importance in each fiber, combining stochastic optimization with randomized sampling, we present a mini-batch stochastic gradient descent algorithm with importance sampling for those special least squares subproblems. Four different sampling strategies are provided. They can avoid forming the full KRP or corresponding probabilities and sample the desired fibers from the original tensor directly. Moreover, a more practical algorithm with adaptive step size is also given. For the proposed algorithms, we present their convergence properties and numerical performance. The results on synthetic data show that our algorithms outperform the existing algorithms in terms of accuracy or the number of iterations.
The sampling Kaczmarz-Motzkin (SKM) method is a generalization of the randomized Kaczmarz and Motzkin methods. It first samples some rows of coefficient matrix randomly to build a set and then makes use of the maximum violation criterion within this set to determine a constraint. Finally, it makes progress by enforcing this single constraint. In this paper, on the basis of the framework of the SKM method and considering the greedy strategies, we present two block sampling Kaczmarz-Motzkin methods for consistent linear systems. Specifically, we also first sample a subset of rows of coefficient matrix and then determine an index in this set using the maximum violation criterion. Unlike the SKM method, in the rest of the block methods, we devise different greedy strategies to build index sets. Then, the new methods make progress by enforcing the corresponding multiple constraints simultaneously. Theoretical analyses demonstrate that these block methods converge at least as quickly as the SKM method, and numerical experiments show that, for the same accuracy, our methods outperform the SKM method in terms of the number of iterations and computing time.
The CANDECOMP/PARAFAC (CP) decomposition is a leading method for the analysis of multiway data. The standard alternating least squares algorithm for the CP decomposition (CP-ALS) involves a series of highly overdetermined linear least squares problems. We extend randomized least squares methods to tensors and show the workload of CP-ALS can be drastically reduced without a sacrifice in quality. We introduce techniques for efficiently preprocessing, sampling, and computing randomized least squares on a dense tensor of arbitrary order, as well as an efficient sampling-based technique for checking the stopping condition. We also show more generally that the Khatri-Rao product (used within the CP-ALS iteration) produces conditions favorable for direct sampling. In numerical results, we see improvements in speed, reductions in memory requirements, and robustness with respect to initialization.
This paper is concerned with improving the empirical convergence speed of block-coordinate descent algorithms for approximate nonnegative tensor factorization (NTF). We propose an extrapolation strategy in-between block updates, referred to as heuristic extrapolation with restarts (HER). HER significantly accelerates the empirical convergence speed of most existing block-coordinate algorithms for dense NTF, in particular for challenging computational scenarios, while requiring a negligible additional computational budget.
We develop a theoretical foundation for the application of Nesterovs accelerated gradient descent method (AGD) to the approximation of solutions of a wide class of partial differential equations (PDEs). This is achieved by proving the existence of an invariant set and exponential convergence rates when its preconditioned version (PAGD) is applied to minimize locally Lipschitz smooth, strongly convex objective functionals. We introduce a second-order ordinary differential equation (ODE) with a preconditioner built-in and show that PAGD is an explicit time-discretization of this ODE, which requires a natural time step restriction for energy stability. At the continuous time level, we show an exponential convergence of the ODE solution to its steady state using a simple energy argument. At the discrete level, assuming the aforementioned step size restriction, the existence of an invariant set is proved and a matching exponential rate of convergence of the PAGD scheme is derived by mimicking the energy argument and the convergence at the continuous level. Applications of the PAGD method to numerical PDEs are demonstrated with certain nonlinear elliptic PDEs using pseudo-spectral methods for spatial discretization, and several numerical experiments are conducted. The results confirm the global geometric and mesh size-independent convergence of the PAGD method, with an accelerated rate that is improved over the preconditioned gradient descent (PGD) method.
In this paper, we investigate the randomized algorithms for block matrix multiplication from random sampling perspective. Based on the A-optimal design criterion, the optimal sampling probabilities and sampling block sizes are obtained. To improve the practicability of the block sizes, two modified ones with less computation cost are provided. With respect to the second one, a two step algorithm is also devised. Moreover, the probability error bounds for the proposed algorithms are given. Extensive numerical results show that our methods outperform the existing one in the literature.