No Arabic abstract
Let $G$ be a graph on $n$ vertices, its adjacency matrix and degree diagonal matrix are denoted by $A(G)$ and $D(G)$, respectively. In 2017, Nikiforov cite{0007} introduced the matrix $A_{alpha}(G)=alpha D(G)+(1-alpha)A(G)$ for $alphain [0, 1].$ The $A_alpha$-spectrum of a graph $G$ consists of all the eigenvalues (including the multiplicities) of $A_alpha(G).$ A graph $G$ is said to be determined by the generalized $A_{alpha}$-spectrum (or, DGA$_alpha$S for short) if whenever $H$ is a graph such that $H$ and $G$ share the same $A_{alpha}$-spectrum and so do their complements, then $H$ is isomorphic to $G$. In this paper, when $alpha$ is rational, we present a simple arithmetic condition for a graph being DGA$_alpha$S. More precisely, put $A_{c_alpha}:={c_alpha}A_alpha(G),$ here ${c_alpha}$ is the smallest positive integer such that $A_{c_alpha}$ is an integral matrix. Let $tilde{W}_{{alpha}}(G)=left[{bf 1},frac{A_{c_alpha}{bf 1}}{c_alpha},ldots, frac{A_{c_alpha}^{n-1}{bf 1}}{c_alpha}right]$, where ${bf 1}$ denotes the all-ones vector. We prove that if $frac{det tilde{W}_{{alpha}}(G)}{2^{lfloorfrac{n}{2}rfloor}}$ is an odd and square-free integer and the rank of $tilde{W}_{{alpha}}(G)$ is full over $mathbb{F}_p$ for each odd prime divisor $p$ of $c_alpha$, then $G$ is DGA$_alpha$S except for even $n$ and odd $c_alpha,(geqslant 3)$. By our obtained results in this paper we may deduce the main results in cite{0005} and cite{0002}.
The r-th power of a graph modifies a graph by connecting every vertex pair within distance r. This paper gives a generalization of the Alon-Boppana Theorem for the r-th power of graphs, including irregular graphs. This leads to a generalized notion of Ramanujan graphs, those for which the powered graph has a spectral gap matching the derived Alon-Boppana bound. In particular, we show that certain graphs that are not good expanders due to local irregularities, such as Erdos-Renyi random graphs, become almost Ramanujan once powered. A different generalization of Ramanujan graphs can also be obtained from the nonbacktracking operator. We next argue that the powering operator gives a more robust notion than the latter: Sparse Erdos-Renyi random graphs with an adversary modifying a subgraph of log(n)^c$ vertices are still almost Ramanujan in the powered sense, but not in the nonbacktracking sense. As an application, this gives robust community testing for different block models.
Teichmuller curves play an important role in the study of dynamics in polygonal billiards. In this article, we provide a criterion similar to the original Mollers criterion, to detect whether a complex curve, embedded in the moduli space of Riemann surfaces and endowed with a line subbundle of the Hodge bundle, is a Teichmuller curve, and give a dynamical proof of this criterion.
A graph $G$ is $k$-edge-Hamiltonian if any collection of vertex-disjoint paths with at most $k$ edges altogether belong to a Hamiltonian cycle in $G$. A graph $G$ is $k$-Hamiltonian if for all $Ssubseteq V(G)$ with $|S|le k$, the subgraph induced by $V(G)setminus S$ has a Hamiltonian cycle. These two concepts are classical extensions for the usual Hamiltonian graphs. In this paper, we present some spectral sufficient conditions for a graph to be $k$-edge-Hamiltonian and $k$-Hamiltonian in terms of the adjacency spectral radius as well as the signless Laplacian spectral radius. Our results extend the recent works proved by Li and Ning [Linear Multilinear Algebra 64 (2016)], Nikiforov [Czechoslovak Math. J. 66 (2016)] and Li, Liu and Peng [Linear Multilinear Algebra 66 (2018)]. Moreover, we shall prove a stability result for graphs being $k$-Hamiltonian, which can be viewed as a complement of two recent results of F{u}redi, Kostochka and Luo [Discrete Math. 340 (2017)] and [Discrete Math. 342 (2019)].
Let $A_alpha(G)$ be the $A_alpha$-matrix of a digraph $G$ and $lambda_{alpha 1}, lambda_{alpha 2}, ldots, lambda_{alpha n}$ be the eigenvalues of $A_alpha(G)$. Let $rho_alpha(G)$ be the $A_alpha$ spectral radius of $G$ and $E_alpha(G)=sum_{i=1}^n lambda_{alpha i}^2$ be the $A_alpha$ energy of $G$ by using second spectral moment. Let $mathcal{G}_n^m$ be the set of non-strongly connected digraphs with order $n$, which contain a unique strong component with order $m$ and some directed trees which are hung on each vertex of the strong component. In this paper, we characterize the digraph which has the maximal $A_alpha$ spectral radius and the maximal (minimal) $A_alpha$ energy in $mathcal{G}_n^m$.
In a semiprime ring, von Neumann regular elements are determined by their inner inverses. In particular, for elements $a,b$ of a von Neumann regular ring $R$, $a=b$ if and only if $I(a)=I(b)$, where $I(x)$ denotes the set of inner inverses of $xin R$. We also prove that, in a semiprime ring, the same is true for reflexive inverses.