Accumulating evidence indicates that soft quark+quark (diquark) correlations play an important role in the structure and interactions of hadrons constituted from three or more valence-quarks; so, it is worth developing insights into diquark structure. Using a leading-order truncation of those equations needed to solve continuum two-valence-body bound-state problems, the leading-twist two-parton distribution amplitudes (DAs) of light-quark scalar and pseudovector diquarks are calculated. The diquark DAs are narrower and taller than the asymptotic profile that characterises mesons. Consequently, the valence quasiparticles in a diquark are less likely to carry a large light-front fraction of the systems total momentum than those in a meson. These features may both influence the form of baryon DAs and be transmitted to diquark distribution functions (DFs), in which case their impact will be felt, e.g. in the protons $u$ and $d$ valence-quark DFs.