Two decades of km-resolution satellite- and ground-based measurements of the precipitable water vapor in the Atacama Desert


Abstract in English

The Atacama Desert has long been established as an excellent site for submillimeter observations. Yet identifying potentially optimal locations for a new facility within this region can require long field campaigns that rely on the construction of weather stations and radiometer facilities to take data over sufficiently long timescales. Meanwhile, high-level remote sensing data products from satellites have generally only been available at >25 km resolution, limiting their utility for astronomical site selection. We aim to improve and expedite the process of site characterization and selection through the use of km-resolution satellite data. We analyze the daytime precipitable water vapor (PWV) values inferred using near-IR measurements from the MODIS Aqua and Terra satellites, comparing the level-2 satellite products to those from existing ground-based measurements from the radiometer at the Atacama Pathfinder Experiment (APEX) site. Since the APEX radiometer data has been extensively tested and compared to atmospheric transmission models, particularly in low-PWV conditions of interest for astronomy, we use these data to re-calibrate the MODIS data for the entire region, reducing systematic errors to a level of < 3%. After re-calibration, the satellite data allow mapping of the PWV across the region, and we identify several promising sites. Our findings confirm previous results, but provide a more complete and higher resolution picture, filling in key spatial and temporal information often missing from dedicated field campaigns. We also examine the seasonal trends in the ground-based data from APEX and surrounding region, finding that both data sets indicate that PWV has increased moderately over the past two decades. We demonstrate a potentially powerful method for siting new facilities such as AtLAST and extensions to global very long baseline interferometry networks like the EHT.

Download