Do you want to publish a course? Click here

Stabilization of the nonconforming virtual element method

70   0   0.0 ( 0 )
 Added by Gianmarco Manzini
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We address the issue of designing robust stabilization terms for the nonconforming virtual element method. To this end, we transfer the problem of defining the stabilizing bilinear form from the elemental nonconforming virtual element space, whose functions are not known in closed form, to the dual space spanned by the known functionals providing the degrees of freedom. By this approach, we manage to construct different bilinear forms yielding optimal or quasi-optimal stability bounds and error estimates, under weaker assumptions on the tessellation than the ones usually considered in this framework. In particular, we prove optimality under geometrical assumptions allowing a mesh to have a very large number of arbitrarily small edges per element. Finally, we numerically assess the performance of the VEM for several different stabilizations fitting with our new framework on a set of representative test cases.



rate research

Read More

162 - B. Ayuso de Dios , , K. Lipnikov 2014
We introduce the nonconforming Virtual Element Method (VEM) for the approximation of second order elliptic problems. We present the construction of the new element in two and three dimensions, highlighting the main differences with the conforming VEM and the classical nonconforming finite element methods. We provide the error analysis and establish the equivalence with a family of mimetic finite difference methods.
We present a survey of the nonconforming Trefftz virtual element method for the Laplace and Helmholtz equations. For the latter, we present a new abstract analysis, based on weaker assumptions on the stabilization, and numerical results on the dispersion analysis, including comparison with the plane wave discontinuous Galerkin method.
In this paper, a stabilized extended finite element method is proposed for Stokes interface problems on unfitted triangulation elements which do not require the interface align with the triangulation. The velocity solution and pressure solution on each side of the interface are separately expanded in the standard nonconforming piecewise linear polynomials and the piecewise constant polynomials, respectively. Harmonic weighted fluxes and arithmetic fluxes are used across the interface and cut edges (segment of the edges cut by the interface), respectively. Extra stabilization terms involving velocity and pressure are added to ensure the stable inf-sup condition. We show a priori error estimates under additional regularity hypothesis. Moreover, the errors {in energy and $L^2$ norms for velocity and the error in $L^2$ norm for pressure} are robust with respect to the viscosity {and independent of the location of the interface}. Results of numerical experiments are presented to {support} the theoretical analysis.
We deal with the Finite Element Tearing and Interconnecting Dual Primal (FETI-DP) preconditioner for elliptic problems discretized by the virtual element method (VEM). We extend the result of [22] to the three dimensional case. We prove polylogarithmic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments validate the theory
In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا