Do you want to publish a course? Click here

Sub-convexity bound for $GL(3) times GL(2)$ $L$-functions: Hybrid level aspect

159   0   0.0 ( 0 )
 Added by Sumit Kumar
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $F$ be a $G L(3)$ Hecke-Maass cuspform of level $P_1$ and $f$ be a $G L(2)$ Hecke-Maass cuspform of level $P_2$. In this article, we will prove a subconvex bound for the $G L(3) times G L(2)$ Rankin-Selberg $L$-function $L(s,Ftimes f)$ in the level aspect for certain ranges for the parameters $P_1$ and $P_2$.



rate research

Read More

Let $phi$ be a Hecke-Maass cusp form for $SL(3, mathbb{Z})$ with Langlands parameters $({bf t}_{i})_{i=1}^{3}$ satisfying $$|{bf t}_{3} - {bf t}_{2}| leq T^{1-xi -epsilon}, quad , {bf t}_{i} approx T, quad , , i=1,2,3$$ with $1/2 < xi <1$ and any $epsilon>0$. Let $f$ be a holomorphic or Maass Hecke eigenform for $SL(2,mathbb{Z})$. In this article, we prove a sub-convexity bound $$L(phi times f, frac{1}{2}) ll max { T^{frac{3}{2}-frac{xi}{4}+epsilon} , T^{frac{3}{2}-frac{1-2 xi}{4}+epsilon} } $$ for the central values $L(phi times f, frac{1}{2})$ of the Rankin-Selberg $L$-function of $phi$ and $f$, where the implied constants may depend on $f$ and $epsilon$. Conditionally, we also obtain a subconvexity bound for $L(phi times f, frac{1}{2})$ when the spectral parameters of $phi$ are in generic position, that is $${bf t}_{i} - {bf t}_{j} approx T, quad , text{for} , i eq j, quad , {bf t}_{i} approx T , , , i=1,2,3.$$
In this article, we will prove subconvex bounds for $GL(3) times GL(2)$ $L$-functions in depth aspect.
Let $f $ be a holomorphic Hecke eigenforms or a Hecke-Maass cusp form for the full modular group $ SL(2, mathbb{Z})$. In this paper we shall use circle method to prove the Weyl exponent for $GL(2)$ $L$-functions. We shall prove that [ L left( frac{1}{2} + it right) ll_{f, epsilon} left( 1 + |t|right)^{1/3 + epsilon}, ] for any $epsilon > 0.$
In this paper we shall prove a subconvexity bound for $GL(2) times GL(2)$ $L$-function in $t$-aspect by using a $GL(1)$ circle method.
Let $f $ be a holomorphic Hecke eigenform or a Hecke-Maass cusp form for the full modular group $ SL(2, mathbb{Z})$. In this paper we shall use circle method to prove the Weyl exponent for $GL(2)$ $L$-functions. We shall prove that [ L left( frac{1}{2} + it, f right) ll_{f, epsilon} left( 2 + |t|right)^{1/3 + epsilon}, ] for any $epsilon > 0.$
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا