Emergent Randomness and Benchmarking from Many-Body Quantum Chaos


Abstract in English

Chaotic quantum many-body dynamics typically lead to relaxation of local observables. In this process, known as quantum thermalization, a subregion reaches a thermal state due to quantum correlations with the remainder of the system, which acts as an intrinsic bath. While the bath is generally assumed to be unobserved, modern quantum science experiments have the ability to track both subsystem and bath at a microscopic level. Here, by utilizing this ability, we discover that measurement results associated with small subsystems exhibit universal random statistics following chaotic quantum many-body dynamics, a phenomenon beyond the standard paradigm of quantum thermalization. We explain these observations with an ensemble of pure states, defined via correlations with the bath, that dynamically acquires a close to random distribution. Such random ensembles play an important role in quantum information science, associated with quantum supremacy tests and device verification, but typically require highly-engineered, time-dependent control for their preparation. In contrast, our approach uncovers random ensembles naturally emerging from evolution with a time-independent Hamiltonian. As an application of this emergent randomness, we develop a benchmarking protocol which estimates the many-body fidelity during generic chaotic evolution and demonstrate it using our Rydberg quantum simulator. Our work has wide ranging implications for the understanding of quantum many-body chaos and thermalization in terms of emergent randomness and at the same time paves the way for applications of this concept in a much wider context.

Download