Do you want to publish a course? Click here

Piezoelectric quantum spin Hall insulator with Rashba spin splitting in Janus monolayer $mathrm{SrAlGaSe_4}$

95   0   0.0 ( 0 )
 Added by San-Dong Guo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The realization of multifunctional two-dimensional (2D) materials is fundamentally intriguing, such as combination of piezoelectricity with topological insulating phase or ferromagnetism. In this work, a Janus monolayer $mathrm{SrAlGaSe_4}$ is built from 2D $mathrm{MA_2Z_4}$ family with dynamic, mechanical and thermal stabilities, which is piezoelectric due to lacking inversion symmetry. The unstrained $mathrm{SrAlGaSe_4}$ monolayer is a narrow gap normal insulator (NI) with spin orbital coupling (SOC). However, the NI to topological insulator (TI) phase transition can be induced by the biaxial strain, and a piezoelectric quantum spin Hall insulator (PQSHI) can be achieved. More excitingly, the phase transformation point is only about 1.01 tensile strain, and nontrivial band topology can hold until considered 1.16 tensile strain. Moreover, a Rashba spin splitting in the conduction bands can exit in PQSHI due to the absence of a horizontal mirror symmetry and the presence of SOC. For monolayer $mathrm{SrAlGaSe_4}$, both in-plane and much weak out-of-plane piezoelectric polarizations can be induced with a uniaxial strain applied. The calculated piezoelectric strain coefficients $d_{11}$ and $d_{31}$ of monolayer $mathrm{SrAlGaSe_4}$ are -1.865 pm/V and -0.068 pm/V at 1.06 tensile strain as a representative TI. In fact, many PQSHIs can be realized from 2D $mathrm{MA_2Z_4}$ family. To confirm that, similar to $mathrm{SrAlGaSe_4}$, the coexistence of piezoelectricity and topological orders can be realized by strain (about 1.04 tensile strain) in the $mathrm{CaAlGaSe_4}$ monolayer. Our works suggest that Janus monolayer $mathrm{SrAlGaSe_4}$ is a pure 2D system for PQSHI, enabling future studies exploring the interplay between piezoelectricity and topological orders, which can lead to novel applications in electronics and spintronics.



rate research

Read More

A two-dimensional (2D) material with piezoelectricity, topological and ferromagnetic (FM) orders, namely 2D piezoelectric quantum anomalous hall insulator (PQAHI), may open new opportunities to realize novel physics and applications. Here, by first-principles calculations, a family of 2D Janus monolayer $mathrm{Fe_2IX}$ (X=Cl and Br) with dynamic, mechanical and thermal stabilities is predict to be room-temperature PQAHI. At the absence of spin-orbit coupling (SOC), monolayer $mathrm{Fe_2IX}$ (X=Cl and Br) is a half Dirac semimetal state. When the SOC is included, these monolayers become quantum anomalous hall (QAH) states with sizable gaps (more than two hundred meV) and two chiral edge modes (Chern number C=2). It is also found that monolayer $mathrm{Fe_2IX}$ (X=Cl and Br) possesses robust QAH states against biaxial strain. By symmetry analysis, it is found that only out-of-plane piezoelectric response can be induced by a uniaxial strain in the basal plane. The calculated out-of-plane $d_{31}$ of $mathrm{Fe_2ICl}$ ($mathrm{Fe_2IBr}$) is 0.467 pm/V (0.384 pm/V), which is higher than or comparable with ones of other 2D known materials. Meanwhile, using Monte Carlo (MC) simulations, the Curie temperature $T_C$ is estimated to be 429/403 K for monolayer $mathrm{Fe_2ICl}$/$mathrm{Fe_2IBr}$ at FM ground state, which is above room temperature. Finally, the interplay of electronic correlations with nontrivial band topology is studied to confirm the robustness of QAH state. The combination of piezoelectricity, topological and FM orders makes monolayer $mathrm{Fe_2IX}$ (X=Cl and Br) become a potential platform for multi-functional spintronic applications with large gap and high $T_C$. Our works provide possibility to use the piezotronic effect to control QAH effects, and can stimulate further experimental works.
A two-dimensional (2D) material system with both piezoelectricity and ferromagnetic (FM) order, referred to as a 2D piezoelectric ferromagnetism (PFM), may open up unprecedented opportunities for intriguing physics. Inspired by experimentally synthesized Janus monolayer MoSSe from $mathrm{MoS_2}$, in this work, the Janus monolayer $mathrm{CrBr_{1.5}I_{1.5}}$ with dynamic, mechanical and thermal stabilities is predicted, which is constructed from synthesized ferromagnetic $mathrm{CrI_3}$ monolayer by replacing the top I atomic layer with Br atoms. Calculated results show that monolayer $mathrm{CrBr_{1.5}I_{1.5}}$ is an intrinsic FM half semiconductor with valence and conduction bands being fully spin-polarized in the same spin direction. Furthermore, monolayer $mathrm{CrBr_{1.5}I_{1.5}}$ possesses a sizable magnetic anisotropy energy (MAE). By symmetry analysis, it is found that both in-plane and out-of-plane piezoelectric polarizations can be induced by a uniaxial strain in the basal plane. The calculated in-plane $d_{22}$ value of 0.557 pm/V is small. However, more excitingly, the out-of-plane $d_{31}$ is as high as 1.138 pm/V, which is obviously higher compared with ones of other 2D known materials. The strong out of-plane piezoelectricity is highly desirable for ultrathin piezoelectric devices. Moreover, strain engineering is used to tune piezoelectricity of monolayer $mathrm{CrBr_{1.5}I_{1.5}}$. It is found that compressive strain can improve the $d_{22}$, and tensile strain can enhance the $d_{31}$. A FM order to antiferromagnetic (AFM) order phase transition can be induced by compressive strain, and the critical point is about 0.95 strain. That is to say that a 2D piezoelectric antiferromagnetism (PAFM) can be achieved by compressive strain, and the corresponding $d_{22}$ and $d_{31}$ are 0.677 pm/V and 0.999 pm/V at 0.94 strain, respectively.
Janus two-dimensional (2D) materials have attracted much attention due to possessing unique properties caused by their out-of-plane asymmetry, which have been achieved in many 2D families. In this work, the Janus monolayers are predicted in new 2D $mathrm{MA_2Z_4}$ family by means of first-principles calculations, $mathrm{MoSi_2N_4}$ and $mathrm{WSi_2N_4}$ of which have been synthesized in experiment(textcolor[rgb]{0.00,0.00,1.00}{Science 369, 670-674 (2020)}). The predicted $mathrm{MSiGeN_4}$ (M=Mo and W) monolayers exhibit dynamic, thermodynamical and mechanical stability, and they are indirect band-gap semiconductors. The inclusion of spin-orbit coupling (SOC) gives rise to the Rashba-type spin splitting, which is observed in the valence bands, being different from common conduction bands. Calculated results show valley polarization at the edge of the conduction bands due to SOC together with inversion symmetry breaking. It is found that $mathrm{MSiGeN_4}$ (M=Mo and W) monolayers have high electron mobilities. Both in-plane and much weak out-of-plane piezoelectric polarizations can be observed, when a uniaxial strain in the basal plane is applied. The values of piezoelectric strain coefficient $d_{11}$ of the Janus $mathrm{MSiGeN_4}$ (M=Mo and W) monolayers fall between those of the $mathrm{MSi_2N_4}$ (M=Mo and W) and $mathrm{MGe_2N_4}$ (M=Mo and W) monolayers, as expected. It is proved that strain can tune the positions of valence band maximum (VBM) and conduction band minimum (CBM), and enhance the the strength of conduction bands convergence caused by compressive strain. It is also found that tensile biaxial strain can enhance $d_{11}$ of $mathrm{MSiGeN_4}$ (M=Mo and W) monolayers, and the compressive strain can improve the $d_{31}$ (absolute values).
135 - C. Martin , E. D. Mun , H. Berger 2012
We report the observation of Shubnikov-de Haas (SdH) oscillations in single crystals of the Rashba spin-splitting compound BiTeI, from both longitudinal ($R_{xx}(B)$) and Hall ($R_{xy}(B)$) magnetoresistance. Under magnetic field up to 65 T, we resolved unambiguously only one frequency $F = 284.3pm 1.3$ T, corresponding to a Fermi momentum $k_{F} = 0.093pm 0.002$AA$^{-1}$.The amplitude of oscillations is strongly suppressed by tilting magnetic field, suggesting a highly two-dimensional Fermi surface. Combining with optical spectroscopy, we show that quantum oscillations may be consistent with a bulk conduction band having a Rashba splitting momentum $k_{R}=0.046pm$AA$^{-1}$.
Evidence for the quantum spin Hall (QSH) effect has been reported in several experimental systems in the form of approximately quantized edge conductance. However, the most fundamental feature of the QSH effect, spin-momentum locking in the edge channels, has never been demonstrated experimentally. Here, we report clear evidence for spin-momentum locking in the edge channels of monolayer WTe2, thought to be a two-dimensional topological insulator (2D TI). We observe that the edge conductance is controlled by the component of an applied magnetic field perpendicular to a particular axis, which we identify as the spin axis. The axis is the same for all edges, situated in the mirror plane perpendicular to the tungsten chains at 40$pm$2{deg} to the layer normal, implying that the spin-orbit coupling is inherited from the bulk band structure. We show that this finding is consistent with theory if the band-edge orbitals are taken to have like parity. We conclude that this parity assignment is correct and that both edge states and bulk bands in monolayer WTe2 share the same simple spin structure. Combined with other known features of the edge states this establishes spin-momentum locking, and therefore that monolayer WTe2 is truly a natural 2D TI.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا