Do you want to publish a course? Click here

Analytic Modeling of Idle Waves in Parallel Programs: Communication, Cluster Topology, and Noise Impact

104   0   0.0 ( 0 )
 Added by Georg Hager
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Most distributed-memory bulk-synchronous parallel programs in HPC assume that compute resources are available continuously and homogeneously across the allocated set of compute nodes. However, long one-off delays on individual processes can cause global disturbances, so-called idle waves, by rippling through the system. This process is mainly governed by the communication topology of the underlying parallel code. This paper makes significant contributions to the understanding of idle wave dynamics. We study the propagation mechanisms of idle waves across the ranks of MPI-parallel programs. We present a validated analytic model for their propagation velocity with respect to communication parameters and topology, with a special emphasis on sparse communication patterns. We study the interaction of idle waves with MPI collectives and show that, depending on the implementation, a collective may be transparent to the wave. Finally we analyze two mechanisms of idle wave decay: topological decay, which is rooted in differences in communication characteristics among parts of the system, and noise-induced decay, which is caused by system or application noise. We show that noise-induced decay is largely independent of noise characteristics but depends only on the overall noise power. An analytic expression for idle wave decay rate with respect to noise power is derived. For model validation we use microbenchmarks and stencil algorithms on three different supercomputing platforms.



rate research

Read More

Analytic, first-principles performance modeling of distributed-memory parallel codes is notoriously imprecise. Even for applications with extremely regular and homogeneous compute-communicate phases, simply adding communication time to computation time does often not yield a satisfactory prediction of parallel runtime due to deviations from the expected simple lockstep pattern caused by system noise, variations in communication time, and inherent load imbalance. In this paper, we highlight the specific cases of provoked and spontaneous desynchronization of memory-bound, bulk-synchronous pure MPI and hybrid MPI+OpenMP programs. Using simple microbenchmarks we observe that although desynchronization can introduce increased waiting time per process, it does not necessarily cause lower resource utilization but can lead to an increase in available bandwidth per core. In case of significant communication overhead, even natural noise can shove the system into a state of automatic overlap of communication and computation, improving the overall time to solution. The saturation point, i.e., the number of processes per memory domain required to achieve full memory bandwidth, is pivotal in the dynamics of this process and the emerging stable wave pattern. We also demonstrate how hybrid MPI-OpenMP programming can prevent desirable desynchronization by eliminating the bandwidth bottleneck among processes. A Chebyshev filter diagonalization application is used to demonstrate some of the observed effects in a realistic setting.
111 - Neil J. Gunther 2011
A parallel program can be represented as a directed acyclic graph. An important performance bound is the time to execute the critical path through the graph. We show how this performance metric is related to Amdahl speedup and the degree of average parallelism. These bounds formally exclude superlinear performance.
103 - Pu Yuan , Kan Zheng , Xiong Xiong 2020
As a highly scalable permissioned blockchain platform, Hyperledger Fabric supports a wide range of industry use cases ranging from governance to finance. In this paper, we propose a model to analyze the performance of a Hyperledgerbased system by using Generalised Stochastic Petri Nets (GSPN). This model decomposes a transaction flow into multiple phases and provides a simulation-based approach to obtain the system latency and throughput with a specific arrival rate. Based on this model, we analyze the impact of different configurations of ordering service on system performance to find out the bottleneck. Moreover, a mathematical configuration selection approach is proposed to determine the best configuration which can maximize the system throughput. Finally, extensive experiments are performed on a running system to validate the proposed model and approaches.
Due to the increasing size of HPC machines, the fault presence is becoming an eventuality that applications must face. Natively, MPI provides no support for the execution past the detection of a fault, and this is becoming more and more constraining. With the introduction of ULFM (User Level Fault Mitigation library), it has been provided with a possible way to overtake a fault during the application execution at the cost of code modifications. ULFM is intrusive in the application and requires also a deep understanding of its recovery procedures. In this paper we propose Legio, a framework that lowers the complexity of introducing resiliency in an embarrassingly parallel MPI application. By hiding ULFM behind the MPI calls, the library is capable to expose resiliency features to the application in a transparent manner thus removing any integration effort. Upon fault, the failed nodes are discarded and the execution continues only with the non-failed ones. A hierarchical implementation of the solution has been also proposed to reduce the overhead of the repair process when scaling towards a large number of nodes. We evaluated our solutions on the Marconi100 cluster at CINECA, showing that the overhead introduced by the library is negligible and it does not limit the scalability properties of MPI. Moreover, we also integrated the solution in real-world applications to further prove its robustness by injecting faults.
Performance and energy are the two most important objectives for optimisation on modern parallel platforms. Latest research demonstrated the importance of workload distribution as a decision variable in the bi-objective optimisation for performance and energy on homogeneous multicore clusters. We show in this work that bi-objective optimisation for performance and energy on heterogeneous processors results in a large number of Pareto-optimal optimal solutions (workload distributions) even in the simple case of linear performance and energy profiles. We then study performance and energy profiles of real-life data-parallel applications and find that their shapes are non-linear, complex and non-smooth. We, therefore, propose an efficient and exact global optimisation algorithm, which takes as an input most general discrete performance and dynamic energy profiles of the heterogeneous processors and solves the bi-objective optimisation problem. The algorithm is also used as a building block to solve the bi-objective optimisation problem for performance and total energy. We also propose a novel methodology to build discrete dynamic energy profiles of individual computing devices, which are input to the algorithm. The methodology is based purely on system-level measurements and addresses the fundamental challenge of accurate component-level energy modelling of a hybrid data-parallel application running on a heterogeneous platform integrating CPUs and accelerators. We experimentally validate the proposed method using two data-parallel applications, matrix multiplication and 2D fast Fourier transform (2D-FFT).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا