Do you want to publish a course? Click here

Magnetohydrostatic Equilibrium Structure and Mass of Polytropic Filamentary Cloud Threaded by Lateral Magnetic Field

74   0   0.0 ( 0 )
 Added by Raiga Kashiwagi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Filamentary structures are recognized as a fundamental component of interstellar molecular clouds in observations by the Herschel satellite. These filaments, especially massive filaments, often extend in a direction perpendicular to the interstellar magnetic field. Furthermore, the filaments sometimes have an apparently negative temperature gradient, that is, their temperature decreases towards the center. In this paper, we study the magnetohydrostatic equilibrium state of negative-indexed polytropic gas with the magnetic field running perpendicular to the axis of the filament. The model is controlled by four parameters: center-to-surface density ratio ($rho_c/rho_s$), plasma $beta$ of the surrounding gas, radius of the parent cloud $R_0$ normalized by the scale height, and the polytropic index $N$. The steepness of the temperature gradient is represented by $N$. We found that the envelope of the column density profile becomes shallow when the temperature gradient is large. This reconciles the inconsistency between the observed profiles and those expected from the isothermal models. We compared the maximum line-mass (mass per unit length), above which there is no equilibrium, with that of the isothermal non-magnetized filament. We obtained an empirical formula to express the maximum line-mass of a magnetized polytropic filament as $lambda_{max}simeqleft[{left(lambda_{0,max}(N)/M_odot{rm pc^{-1}}right)^2+left[5.9(1.0+1.2/N)^{1/2}({Phi_{cl}}/{1mu {rm G,pc}})right]^2}right]^{1/2}M_odot {rm pc^{-1}}$, where $lambda_{0,max}(N)$ represents the maximum line-mass of the non-magnetized filament and $Phi_{cl}$ indicates one-half of the magnetic flux threading the filament per unit length. Although the negative-indexed polytrope makes the maximum line-mass decrease compared with that of the isothermal model, a magnetic field threading the filament increases the line-mass.



rate research

Read More

LDN 1157, is one of the several clouds situated in the cloud complex, LDN 1147/1158, represents a coma-shaped morphology with a well-collimated bipolar outflow emanating from a Class 0 protostar, LDN 1157-mm. The main goals of this work are (a) to map the inter-cloud magnetic field (ICMF) geometry of the region surrounding LDN 1157 to investigate its relationship with the cloud morphology, with the outflow direction and with the core magnetic field (CMF) geometry inferred from the mm- and sub-mm polarization results from the literature, and (b) to investigate the kinematic structure of the cloud. We carried out R-band polarization observations of the stars projected on the cloud to map the pc-scale magnetic field geometry and made spectroscopic observations of the entire cloud in 12CO, C18O and N2H+ (J=1-0) lines to investigate its kinematic structure. We obtained a distance of 340$pm$3 pc to the LDN 1147/1158, complex based on the Gaia DR2 parallaxes and proper motion values of the three YSOs associated with the complex. A single filament of $sim1.2$ pc in length and $sim0.09$ pc in width is found to run all along the coma-shaped cloud. Based on the relationships between the ICMF, CMF, filament orientations, outflow direction, and the presence of an hour-glass morphology of the magnetic field, it is likely that the magnetic field had played an important role in the star formation process in LDN 1157. Combining the proper motions of the YSOs and the radial velocity of LDN 1147/1158 and another complex LDN 1172/1174 which is situated $sim2$dgr~east of it, we found that both the complexes are moving collectively toward the Galactic plane. The filamentary morphology of the east-west segment of LDN 1157 may have formed as a result of mass lost by ablation due to the interaction of the moving cloud with the ambient interstellar medium.
277 - C.Y. Law , H.-b. Li , Z. Cao 2020
During the past decade the dynamical importance of magnetic fields in molecular clouds has been increasingly recognized, as observational evidence has accumulated. However, how a magnetic field affect star formation is still unclear. Typical star formation models still treat a magnetic fields as an isotropic pressure, ignoring the fundamental property of dynamically important magnetic fields: their direction. This study builds on our previous work which demonstrated how the mean magnetic field orientation relative to the global cloud elongation can affect cloud fragmentation. After the linear mass distribution reported earlier, we show here that the mass cumulative function (MCF) of a cloud is also regulated by the field orientation. A cloud elongated closer to the field direction tends to have a shallower MCF, in other words, a higher portion of the gas in high density. The evidence is consistent with our understanding of bimodal star formation efficiency discovered earlier, which is also correlated with the field orientations.
We study effect of magnetic field on massive dense core formation in colliding unequal molecular clouds by performing magnetohydrodynamic simulations with sub-parsec resolution (0.015 pc) that can resolve the molecular cores. Initial clouds with the typical gas density of the molecular clouds are immersed in various uniform magnetic fields. The turbulent magnetic fields in the clouds consistent with the observation by Crutcher et al. (2010) are generated by the internal turbulent gas motion before the collision, if the uniform magnetic field strength is 4.0 $mu$G. The collision speed of 10 km s$^{-1}$ is adopted, which is much larger than the sound speeds and the Alfv{e}n speeds of the clouds. We identify gas clumps with gas densities greater than 5 $times$ 10$^{-20}$ g cm$^{-3}$ as the dense cores and trace them throughout the simulations to investigate their mass evolution and gravitational boundness. We show that a greater number of massive, gravitationally bound cores are formed in the strong magnetic field (4.0 $mu$G) models than the weak magnetic field (0.1 $mu$G) models. This is partly because the strong magnetic field suppresses the spatial shifts of the shocked layer that should be caused by the nonlinear thin shell instability. The spatial shifts promote formation of low-mass dense cores in the weak magnetic field models. The strong magnetic fields also support low-mass dense cores against gravitational collapse. We show that the numbers of massive, gravitationally bound cores formed in the strong magnetic field models are much larger than the isolated, non-colliding cloud models, which are simulated for comparison. We discuss the implications of our numerical results on massive star formation.
The initial conditions of massive star and star cluster formation are expected to be cold, dense and high column density regions of the interstellar medium, which can reveal themselves via near, mid and even far-infrared absorption as Infrared Dark Clouds (IRDCs). Elucidating the dynamical state of IRDCs thus constrains theoretical models of these complex processes. In particular, it is important to assess whether IRDCs have reached virial equilibrium, where the internal pressure balances that due to the self-gravitating weight of the cloud plus the pressure of the external environmental. We study this question for the filamentary IRDC G035.39-00.33 by deriving mass from combined NIR & MIR extinction maps and velocity dispersion from C18O (1-0) & (2-1) line emission. In contrast to our previous moderately super-virial results based on 13CO emission and MIR-only extinction mapping, with improved mass measurements we now find that the filament is consistent with being in virial equilibrium, at least in its central parsec-wide region where ~1000 M_Sun snakes along several parsecs. This equilibrium state does not require large-scale net support or confinement by magnetic fields.
53 - Enci Wang , Jing Wang , Xu Kong 2017
In this paper, we report the peculiar HI morphology of the cluster spiral galaxy NGC 6145, which has a 150 kpc HI filament on one side that is nearly parallel to its major axis. This filament is made up of several HI clouds and the diffuse HI gas between them, with no optical counterparts. We compare its HI distribution with other one-sided HI distributions in the literature, and find that the overall HI distribution is very different from the typical tidal and ram-pressure stripped HI shape, and its morphology is inconsistent with being a pure accretion event. Only about 30% of the total HI gas is anchored on the stellar disk, while most of HI gas forms the filament in the west. At a projected distance of 122 kpc, we find a massive elliptical companion (NGC 6146) with extended radio emission, whose axis points to an HI gap in NGC 6145. The velocity of the HI filament shows an overall light-of- sight motion of 80 to 180 km/s with respect to NGC 6145. Using the long-slit spectra of NGC 6145 along its major stellar axis, we find that some outer regions show enhanced star formation, while in contrast, almost no star formation activities are found in its center (less than 2 kpc). Pure accretion, tidal or ram-pressure stripping is not likely to produce the observed HI filament. An alternative explanation is the jet-stripping from NGC 6146, although direct evidence for a jet-cold gas interaction has not been found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا