Strange electrical transport: Colossal magnetoresistance via avoiding fully polarized magnetization in ferrimagnetic insulator Mn3Si2Te6


Abstract in English

Colossal magnetoresistance is of great fundamental and technological significance and exists mostly in the manganites and a few other materials. Here we report colossal magnetoresistance that is starkly different from that in all other materials. The stoichiometric Mn3Si2Te6 is an insulator featuring a ferrimagnetic transition at 78 K. The resistivity drops by 7 orders of magnitude with an applied magnetic field above 9 Tesla, leading to an insulator-metal transition at up to 130 K. However, the colossal magnetoresistance occurs only when the magnetic field is applied along the magnetic hard axis and is surprisingly absent when the magnetic field is applied along the magnetic easy axis where magnetization is fully saturated. The anisotropy field separating the easy and hard axes is 13 Tesla, unexpected for the Mn ions with nominally negligible orbital momentum and spin-orbit interactions. Double exchange and Jahn-Teller distortions that drive the hole-doped manganites do not exist in Mn3Si2Te6. The phenomena fit no existing models, suggesting a unique, intriguing type of electrical transport.

Download