The visibility of the two-photon interference in the Franson interferometer serves as a measure of the energy-time entanglement of the photons. We propose to control the visibility of the interference in the second-order coherence function by implementing a coherent time-delayed feedback mechanism. Simulating the non-Markovian dynamics within the matrix product state framework, we find that the visibility for two photons emitted from a three-level system (3LS) in ladder configuration can be enhanced significantly for a wide range of parameters by slowing down the decay of the upper level of the 3LS.
Motivated by improving performance of a bi-stable vibration energy harvester (VEH) from the viewpoint of vibration control, the time-delayed feedback control of displacement and velocity are constructively proposed into an electromechanical coupled VEH mounted on a rotational automobile tire, which is subject to colored noise and the periodic excitation. Using the improved stochastic averaging procedure based on energy-dependent frequency, the expressions of stationary probability density (SPD) and signal-to-noise ratio (SNR) are obtained analytically. Then, the efficiency of time-delayed feedback control on the stationary response and stochastic resonance (SR) for the delay-controlled VEH is explored in detail theoretically. Results show that both noise-induced SR and delay-induced SR can occur. Time delay is able to not only enhance the SR behavior but also weaken it. Furthermore, a larger negative feedback gain of displacement and a larger positive feedback gain of velocity are more beneficial for VEH. Interesting finding is that the optimal combination of time delay in maximizing the harvested performance, such as the harvest power, the output RMS voltage and the power conversion efficiency, is almost perfectly consistent with that in maximizing SNR. Compared with the uncontrolled VEH, the delay-controlled VEH can achieve certain desirable optimization in harvesting energy by choosing the appropriate combination of time delays and feedback gains.
The influence of time delay in systems of two coupled excitable neurons is studied in the framework of the FitzHugh-Nagumo model. Time-delay can occur in the coupling between neurons or in a self-feedback loop. The stochastic synchronization of instantaneously coupled neurons under the influence of white noise can be deliberately controlled by local time-delayed feedback. By appropriate choice of the delay time synchronization can be either enhanced or suppressed. In delay-coupled neurons, antiphase oscillations can be induced for sufficiently large delay and coupling strength. The additional application of time-delayed self-feedback leads to complex scenarios of synchronized in-phase or antiphase oscillations, bursting patterns, or amplitude death.
Fault tolerant quantum computing relies on the ability to detect and correct errors, which in quantum error correction codes is typically achieved by projectively measuring multi-qubit parity operators and by conditioning operations on the observed error syndromes. Here, we experimentally demonstrate the use of an ancillary qubit to repeatedly measure the $ZZ$ and $XX$ parity operators of two data qubits and to thereby project their joint state into the respective parity subspaces. By applying feedback operations conditioned on the outcomes of individual parity measurements, we demonstrate the real-time stabilization of a Bell state with a fidelity of $Fapprox 74%$ in up to 12 cycles of the feedback loop. We also perform the protocol using Pauli frame updating and, in contrast to the case of real-time stabilization, observe a steady decrease in fidelity from cycle to cycle. The ability to stabilize parity over multiple feedback rounds with no reduction in fidelity provides strong evidence for the feasibility of executing stabilizer codes on timescales much longer than the intrinsic coherence times of the constituent qubits.
The no-knowledge quantum feedback was proposed by Szigeti et al., Phys. Rev. Lett. 113, 020407 (2014), as a measurement-based feedback protocol for decoherence suppression for an open quantum system. By continuously measuring environmental noises and feeding back controls on the system, the protocol can completely reverse the measurement backaction and therefore suppress the systems decoherence. However, the complete decoherence cancellation was shown only for the instantaneous feedback, which is impractical in real experiments. Therefore, in this work, we generalize the original work and investigate how the decoherence suppression can be degraded with unavoidable delay times, by analyzing non-Markovian average dynamics. We present analytical expressions for the average dynamics and numerically analyze the effects of the delayed feedback for a coherently driven two-level system, coupled to a bosonic bath via a Hermitian coupling operator. We also find that, when the qubits unitary dynamics does not commute with the measurement and feedback controls, the decoherence rate can be either suppressed or amplified, depending on the delay time.
We present a unified view of the Berry phase of a quantum system and its entanglement with surroundings. The former reflects the nonseparability between a system and a classical environment as the latter for a quantum environment, and the concept of geometric time-energy uncertainty can be adopted as a signature of the nonseparability. Based on this viewpoint, we study their relationship in the quantum-classical transition of the environment, with the aid of a spin-half particle (qubit) model exposed to a quantum-classical hybrid field. In the quantum-classical transition, the Berry phase has a similar connection with the time-energy uncertainty as the case with only a classical field, whereas the geometric phase for the mixed state of the qubit exhibits a complementary relationship with the entanglement. Namely, for a fixed time-energy uncertainty, the entanglement is gradually replaced by the mixed geometric phase as the quantum field vanishes. And the mixed geometric phase becomes the Berry phase in the classical limit. The same results can be draw out from a displaced harmonic oscillator model.