Do you want to publish a course? Click here

A transiting warm giant planet around the young active star TOI-201

217   0   0.0 ( 0 )
 Added by Melissa Hobson
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the confirmation of the eccentric warm giant planet TOI-201 b, first identified as a candidate in textit{TESS} photometry (Sectors 1-8, 10-13, and 27-28) and confirmed using ground-based photometry from NGTS and radial velocities from FEROS, HARPS, CORALIE, and textsc{Minerva}-Australis. TOI-201 b orbits a young ($mathrm{0.87^{+0.46}_{-0.49} , Gyr}$) and bright(V=9.07 mag) F-type star with a $mathrm{52.9781 , d}$ period. The planet has a mass of $mathrm{0.42^{+0.05}_{-0.03}, M_J}$, a radius of $mathrm{1.008^{+0.012}_{-0.015}, R_J}$, and an orbital eccentricity of $0.28^{+0.06}_{-0.09}$; it appears to still be undergoing fairly rapid cooling, as expected given the youth of the host star. The star also shows long-term variability in both the radial velocities and several activity indicators, which we attribute to stellar activity. The discovery and characterization of warm giant planets such as TOI-201 b is important for constraining formation and evolution theories for giant planets.



rate research

Read More

The SHINE program is a large high-contrast near-infrared survey of 600 young, nearby stars. It is aimed at searching for and characterizing new planetary systems using VLT/SPHEREs unprecedented high-contrast and high-angular resolution imaging capabilities. It also intends at placing statistical constraints on the occurrence and orbital properties of the giant planet population at large orbits as a function of the stellar host mass and age to test planet formation theories. We use the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-constrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP65426. It is a member of the ~17 Myr old Lower Centaurus-Crux association. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2um indicate a warm, dusty atmosphere characteristic of young low surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 MJup, Teff=1300-1600 K and R=1.5 RJup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g)=4.0-5.0 with smaller radii (1.0-1.3 RJup). Given its physical and spectral properties, HIP65426b occupies a rather unique placement in terms of age, mass and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
AU Mic is a young, active star whose transiting planet was recently detected. We report our analysis of its TESS data, where we modeled the BY Draconis type quasi-periodic rotational modulation by starspots simultaneously to the flaring activity and planetary transits. We measured a flare occurrence rate of 6.35 flares per day for flares with amplitudes in the range of $0.06% < f_{rm max} < 1.5%$ of the star flux. We employed a Bayesian MCMC analysis to model the five transits of AU Mic b, improving the constraints on the planetary parameters. The planet radius of $4.07pm0.17$~R$_{oplus}$ and a mean density of $1.4pm0.4$~g~cm$^{-3}$ confirms that it is a Neptune-size moderately inflated planet. While a single feature possibly due to a second planet was previously reported in the former TESS data, we report the detection of two additional transit-like events in the new TESS observations of July 2020. This represents substantial evidence for a second planet (AU Mic c) in the system. We analyzed its three transits and obtained an orbital period of $18.859019pm0.000016$~d and a planetary radius of $3.24pm0.16$~R$_{oplus}$, which defines it as a warm Neptune-size planet with an expected mass in the range of 2.2~M$_{oplus}$~$< M_{rm c} < $25.0~M$_{oplus}$. The two planets in the system are in near 9:4 mean-motion resonance. We show that this configuration is dynamically stable and should produce transit-timing variations (TTV). Our non-detection of significant TTV in AU Mic b suggests an upper limit for the mass of AU Mic c of $<7$~M$_{oplus}$, indicating that this planet is also likely to be inflated. As a young multi-planet system with at least two transiting planets, AU Mic becomes a key system for the study of atmospheres of infant planets and of planet-planet and planet-disk dynamics at the early stages of planetary evolution.
We present the confirmation and characterisation of GJ 3473 b (G 50--16, TOI-488.01), a hot Earth-sized planet orbiting an M4 dwarf star, whose transiting signal ($P=1.1980035pm0.0000018mathrm{,d}$) was first detected by the Transiting Exoplanet Survey Satellite (TESS). Through a joint modelling of follow-up radial velocity observations with CARMENES, IRD, and HARPS together with extensive ground-based photometric follow-up observations with LCOGT, MuSCAT, and MuSCAT2, we determined a precise planetary mass, $M_b = 1.86pm0.30,mathrm{M_oplus},$ and radius, $R_b = {1.264pm0.050},mathrm{R_oplus}$. Additionally, we report the discovery of a second, temperate, non-transiting planet in the system, GJ 3473 c, which has a minimum mass, $M_c sin{i} = {7.41pm0.91},mathrm{M_oplus,}$ and orbital period, $P_c={15.509pm0.033},mathrm{d}$. The inner planet of the system, GJ 3473 b, is one of the hottest transiting Earth-sized planets known thus far, accompanied by a dynamical mass measurement, which makes it a particularly attractive target for thermal emission spectroscopy.
We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, $m_{rm Kp} = 11.6$, $T_{rm eff} = 5576$ K, $M_star = 0.98, M_odot$). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planets radius is $6.1 pm 0.2 R_{earth}$, based on the transit light curve and the estimated stellar parameters. The planets mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit we can place a rough upper bound of $120 M_{earth}$ (3$sigma$). The host star has a high obliquity ($psi$ = $104^{circ}$), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.
TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P=11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light curves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hours. Radial velocity follow-up with FEROS, HARPS and PFS confirms the planetary nature of the transiting candidate (a$_{rm b}$ = 0.096 $pm$ 0.002 au, m$_{rm b}$ = 0.98 $pm$ 0.06 M$_{rm Jup}$), and dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a$_{rm c}$ = 0.155 $pm$ 0.003 au, m$_{rm c}$= $0.37 pm 0.10$ M$_{rm Jup}$) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M$_odot$, a radius of 0.79 R$_odot$, and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 MMR, which is a rare configuration, and their formation and dynamical evolution are still not well understood.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا