No Arabic abstract
Whilst contrastive learning has achieved remarkable success in self-supervised representation learning, its potential for deep clustering remains unknown. This is due to its fundamental limitation that the instance discrimination strategy it takes is not class sensitive and hence unable to reason about the underlying decision boundaries between semantic concepts or classes. In this work, we solve this problem by introducing a novel variant called Semantic Contrastive Learning (SCL). It explores the characteristics of both conventional contrastive learning and deep clustering by imposing distance-based cluster structures on unlabelled training data and also introducing a discriminative contrastive loss formulation. For explicitly modelling class boundaries on-the-fly, we further formulate a clustering consistency condition on the two different predictions given by visual similarities and semantic decision boundaries. By advancing implicit representation learning towards explicit understandings of visual semantics, SCL can amplify jointly the strengths of contrastive learning and deep clustering in a unified approach. Extensive experiments show that the proposed model outperforms the state-of-the-art deep clustering methods on six challenging object recognition benchmarks, especially on finer-grained and larger datasets.
Recently, many unsupervised deep learning methods have been proposed to learn clustering with unlabelled data. By introducing data augmentation, most of the latest methods look into deep clustering from the perspective that the original image and its transformation should share similar semantic clustering assignment. However, the representation features could be quite different even they are assigned to the same cluster since softmax function is only sensitive to the maximum value. This may result in high intra-class diversities in the representation feature space, which will lead to unstable local optimal and thus harm the clustering performance. To address this drawback, we proposed Deep Robust Clustering (DRC). Different from existing methods, DRC looks into deep clustering from two perspectives of both semantic clustering assignment and representation feature, which can increase inter-class diversities and decrease intra-class diversities simultaneously. Furthermore, we summarized a general framework that can turn any maximizing mutual information into minimizing contrastive loss by investigating the internal relationship between mutual information and contrastive learning. And we successfully applied it in DRC to learn invariant features and robust clusters. Extensive experiments on six widely-adopted deep clustering benchmarks demonstrate the superiority of DRC in both stability and accuracy. e.g., attaining 71.6% mean accuracy on CIFAR-10, which is 7.1% higher than state-of-the-art results.
Deep clustering successfully provides more effective features than conventional ones and thus becomes an important technique in current unsupervised learning. However, most deep clustering methods ignore the vital positive and negative pairs introduced by data augmentation and further the significance of contrastive learning, which leads to suboptimal performance. In this paper, we present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views to obtain more discriminative features and competitive results. Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs and set one of the other augmented samples as negative sample pairs. After that, we can adopt the sample-wise contrastive loss to pull positive sample pairs together and push negative sample pairs apart. Similarly, for the class view, we build the positive and negative pairs from the sample distribution of the class. In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level. Extensive experimental results on six benchmark datasets demonstrate the superiority of our proposed model against state-of-the-art methods. Particularly in the challenging dataset Tiny-ImageNet, our method leads 5.6% against the latest comparison method. Our code will be available at url{https://github.com/ZhiyuanDang/DCDC}.
Collecting labeled data for the task of semantic segmentation is expensive and time-consuming, as it requires dense pixel-level annotations. While recent Convolutional Neural Network (CNN) based semantic segmentation approaches have achieved impressive results by using large amounts of labeled training data, their performance drops significantly as the amount of labeled data decreases. This happens because deep CNNs trained with the de facto cross-entropy loss can easily overfit to small amounts of labeled data. To address this issue, we propose a simple and effective contrastive learning-based training strategy in which we first pretrain the network using a pixel-wise, label-based contrastive loss, and then fine-tune it using the cross-entropy loss. This approach increases intra-class compactness and inter-class separability, thereby resulting in a better pixel classifier. We demonstrate the effectiveness of the proposed training strategy using the Cityscapes and PASCAL VOC 2012 segmentation datasets. Our results show that pretraining with the proposed contrastive loss results in large performance gains (more than 20% absolute improvement in some settings) when the amount of labeled data is limited. In many settings, the proposed contrastive pretraining strategy, which does not use any additional data, is able to match or outperform the widely-used ImageNet pretraining strategy that uses more than a million additional labeled images.
Deep learning methods have achieved great success in pedestrian detection, owing to its ability to learn features from raw pixels. However, they mainly capture middle-level representations, such as pose of pedestrian, but confuse positive with hard negative samples, which have large ambiguity, e.g. the shape and appearance of `tree trunk or `wire pole are similar to pedestrian in certain viewpoint. This ambiguity can be distinguished by high-level representation. To this end, this work jointly optimizes pedestrian detection with semantic tasks, including pedestrian attributes (e.g. `carrying backpack) and scene attributes (e.g. `road, `tree, and `horizontal). Rather than expensively annotating scene attributes, we transfer attributes information from existing scene segmentation datasets to the pedestrian dataset, by proposing a novel deep model to learn high-level features from multiple tasks and multiple data sources. Since distinct tasks have distinct convergence rates and data from different datasets have different distributions, a multi-task objective function is carefully designed to coordinate tasks and reduce discrepancies among datasets. The importance coefficients of tasks and network parameters in this objective function can be iteratively estimated. Extensive evaluations show that the proposed approach outperforms the state-of-the-art on the challenging Caltech and ETH datasets, where it reduces the miss rates of previous deep models by 17 and 5.5 percent, respectively.
Contrastive learning has shown superior performance in embedding global and spatial invariant features in computer vision (e.g., image classification). However, its overall success of embedding local and spatial variant features is still limited, especially for semantic segmentation. In a per-pixel prediction task, more than one label can exist in a single image for segmentation (e.g., an image contains both cat, dog, and grass), thereby it is difficult to define positive or negative pairs in a canonical contrastive learning setting. In this paper, we propose an attention-guided supervised contrastive learning approach to highlight a single semantic object every time as the target. With our design, the same image can be embedded to different semantic clusters with semantic attention (i.e., coerce semantic masks) as an additional input channel. To achieve such attention, a novel two-stage training strategy is presented. We evaluate the proposed method on multi-organ medical image segmentation task, as our major task, with both in-house data and BTCV 2015 datasets. Comparing with the supervised and semi-supervised training state-of-the-art in the backbone of ResNet-50, our proposed pipeline yields substantial improvement of 5.53% and 6.09% in Dice score for both medical image segmentation cohorts respectively. The performance of the proposed method on natural images is assessed via PASCAL VOC 2012 dataset, and achieves 2.75% substantial improvement.