We show that a metastable dark matter candidate arises naturally from the conformal transformation between the Einstein metric, where gravitons are normalised states, and the Jordan metric dictating the coupling between gravity and matter. Despite being secluded from the Standard Model by a large scale above which the Jordan metric shows modifications to the Einstein frame metric, dark matter couples to the energy momentum tensor of the Higgs field in the primordial plasma primarily. This allows for the production of dark matter in a sufficient amount which complies with observations. The seclusion of dark matter makes it long-lived for masses $lesssim 1$ MeV, with a lifetime much above the age of the Universe and the present experimental limits. Such a dark matter scenario has clear monochromatic signatures generated by the decay of the dark matter candidate into neutrino and/or $gamma-$rays.