Do you want to publish a course? Click here

House-GAN++: Generative Adversarial Layout Refinement Networks

329   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper proposes a novel generative adversarial layout refinement network for automated floorplan generation. Our architecture is an integration of a graph-constrained relational GAN and a conditional GAN, where a previously generated layout becomes the next input constraint, enabling iterative refinement. A surprising discovery of our research is that a simple non-iterative training process, dubbed component-wise GT-conditioning, is effective in learning such a generator. The iterative generator also creates a new opportunity in further improving a metric of choice via meta-optimization techniques by controlling when to pass which input constraints during iterative layout refinement. Our qualitative and quantitative evaluation based on the three standard metrics demonstrate that the proposed system makes significant improvements over the current state-of-the-art, even competitive against the ground-truth floorplans, designed by professional architects.



rate research

Read More

This paper proposes a novel graph-constrained generative adversarial network, whose generator and discriminator are built upon relational architecture. The main idea is to encode the constraint into the graph structure of its relational networks. We have demonstrated the proposed architecture for a new house layout generation problem, whose task is to take an architectural constraint as a graph (i.e., the number and types of rooms with their spatial adjacency) and produce a set of axis-aligned bounding boxes of rooms. We measure the quality of generated house layouts with the three metrics: the realism, the diversity, and the compatibility with the input graph constraint. Our qualitative and quantitative evaluations over 117,000 real floorplan images demonstrate that the proposed approach outperforms existing methods and baselines. We will publicly share all our code and data.
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.
122 - Hao Tang , Nicu Sebe 2021
In this paper, we address the task of layout-to-image translation, which aims to translate an input semantic layout to a realistic image. One open challenge widely observed in existing methods is the lack of effective semantic constraints during the image translation process, leading to models that cannot preserve the semantic information and ignore the semantic dependencies within the same object. To address this issue, we propose a novel Double Pooing GAN (DPGAN) for generating photo-realistic and semantically-consistent results from the input layout. We also propose a novel Double Pooling Module (DPM), which consists of the Square-shape Pooling Module (SPM) and the Rectangle-shape Pooling Module (RPM). Specifically, SPM aims to capture short-range semantic dependencies of the input layout with different spatial scales, while RPM aims to capture long-range semantic dependencies from both horizontal and vertical directions. We then effectively fuse both outputs of SPM and RPM to further enlarge the receptive field of our generator. Extensive experiments on five popular datasets show that the proposed DPGAN achieves better results than state-of-the-art methods. Finally, both SPM and SPM are general and can be seamlessly integrated into any GAN-based architectures to strengthen the feature representation. The code is available at https://github.com/Ha0Tang/DPGAN.
One of the biggest issues facing the use of machine learning in medical imaging is the lack of availability of large, labelled datasets. The annotation of medical images is not only expensive and time consuming but also highly dependent on the availability of expert observers. The limited amount of training data can inhibit the performance of supervised machine learning algorithms which often need very large quantities of data on which to train to avoid overfitting. So far, much effort has been directed at extracting as much information as possible from what data is available. Generative Adversarial Networks (GANs) offer a novel way to unlock additional information from a dataset by generating synthetic samples with the appearance of real images. This paper demonstrates the feasibility of introducing GAN derived synthetic data to the training datasets in two brain segmentation tasks, leading to improvements in Dice Similarity Coefficient (DSC) of between 1 and 5 percentage points under different conditions, with the strongest effects seen fewer than ten training image stacks are available.
We address the problem of finding realistic geometric corrections to a foreground object such that it appears natural when composited into a background image. To achieve this, we propose a novel Generative Adversarial Network (GAN) architecture that utilizes Spatial Transformer Networks (STNs) as the generator, which we call Spatial Transformer GANs (ST-GANs). ST-GANs seek image realism by operating in the geometric warp parameter space. In particular, we exploit an iterative STN warping scheme and propose a sequential training strategy that achieves better results compared to naive training of a single generator. One of the key advantages of ST-GAN is its applicability to high-resolution images indirectly since the predicted warp parameters are transferable between reference frames. We demonstrate our approach in two applications: (1) visualizing how indoor furniture (e.g. from product images) might be perceived in a room, (2) hallucinating how accessories like glasses would look when matched with real portraits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا