No Arabic abstract
The catch-up effect and the Matthew effect offer opposing characterizations of globalization: the former predicts an eventual convergence as the poor can grow faster than the rich due to free exchanges of complementary resources, while the latter, a deepening inequality between the rich and the poor. To understand these effects on the globalization of research, we conduct an in-depth study based on scholarly and patent publications covering STEM research from 218 countries/regions over the past four decades, covering more than 55 million scholarly articles and 1.7 billion citations. Unique to this investigation is the simultaneous examination of both the research output and its impact in the same data set, using a novel machine learning based measure, called saliency, to mitigate the intrinsic biases in quantifying the research impact. The results show that the two effects are in fact co-occurring: there are clear indications of convergence among the high income and upper middle income countries across the STEM fields, but a widening gap is developing that segregates the lower middle and low income regions from the higher income regions. Furthermore, the rate of convergence varies notably among the STEM sub-fields, with the highly strategic area of Artificial Intelligence (AI) sandwiched between fields such as Medicine and Materials Science that occupy the opposite ends of the spectrum. The data support the argument that a leading explanation of the Matthew effect, namely, the preferential attachment theory, can actually foster the catch-up effect when organizations from lower income countries forge substantial research collaborations with those already dominant. The data resoundingly show such collaborations benefit all parties involved, and a case of role reversal can be seen in the Materials Science field where the most advanced signs of convergence are observed.
In this study, we investigate the scientific research response from the early stages of the pandemic, and we review key findings on how the early warning systems developed in previous epidemics responded to contain the virus. The data records are analysed with commutable statistical methods, including R Studio, Bibliometrix package, and the Web of Science data mining tool. We identified few different clusters, containing references to exercise, inflammation, smoking, obesity and many additional factors. From the analysis on Covid-19 and vaccine, we discovered that although the USA is leading in volume of scientific research on Covid 19 vaccine, the leading 3 research institutions (Fudan, Melbourne, Oxford) are not based in the USA. Hence, it is difficult to predict which country would be first to produce a Covid 19 vaccine.
QAnon is a far-right conspiracy theory that became popular and mainstream over the past few years. Worryingly, the QAnon conspiracy theory has implications in the real world, with supporters of the theory participating in real-world violent acts like the US capitol attack in 2021. At the same time, the QAnon theory started evolving into a global phenomenon by attracting followers across the globe and, in particular, in Europe. Therefore, it is imperative to understand how the QAnon theory became a worldwide phenomenon and how this dissemination has been happening in the online space. This paper performs a large-scale data analysis of QAnon through Telegram by collecting 4.5M messages posted in 161 QAnon groups/channels. Using Googles Perspective API, we analyze the toxicity of QAnon content across languages and over time. Also, using a BERT-based topic modeling approach, we analyze the QAnon discourse across multiple languages. Among other things, we find that the German language is prevalent in QAnon groups/channels on Telegram, even overshadowing English after 2020. Also, we find that content posted in German and Portuguese tends to be more toxic compared to English. Our topic modeling indicates that QAnon supporters discuss various topics of interest within far-right movements, including world politics, conspiracy theories, COVID-19, and the anti-vaccination movement. Taken all together, we perform the first multilingual study on QAnon through Telegram and paint a nuanced overview of the globalization of the QAnon theory.
One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows.
The history of data analysis that is addressed here is underpinned by two themes, -- those of tabular data analysis, and the analysis of collected heterogeneous data. Exploratory data analysis is taken as the heuristic approach that begins with data and information and seeks underlying explanation for what is observed or measured. I also cover some of the evolving context of research and applications, including scholarly publishing, technology transfer and the economic relationship of the university to society.
Web archiving services play an increasingly important role in todays information ecosystem, by ensuring the continuing availability of information, or by deliberately caching content that might get deleted or removed. Among these, the Wayback Machine has been proactively archiving, since 200