Do you want to publish a course? Click here

A test of the planet-star unipolar inductor for magnetic white dwarfs

91   0   0.0 ( 0 )
 Added by Nikolay Walters
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Despite thousands of spectroscopic detections, only four isolated white dwarfs exhibit Balmer emission lines. The temperature inversion mechanism is a puzzle over 30 years old that has defied conventional explanations. One hypothesis is a unipolar inductor that achieves surface heating via ohmic dissipation of a current loop between a conducting planet and a magnetic white dwarf. To investigate this model, new time-resolved spectroscopy, spectropolarimetry, and photometry of the prototype GD 356 are studied. The emission features vary in strength on the rotational period, but in anti-phase with the light curve, consistent with a cool surface spot beneath an optically thin chromosphere. Possible changes in the line profiles are observed at the same photometric phase, potentially suggesting modest evolution of the emission region, while the magnetic field varies by 10 per cent over a full rotation. These comprehensive data reveal neither changes to the photometric period, nor additional signals such as might be expected from an orbiting body. A closer examination of the unipolar inductor model finds points of potential failure: the observed rapid stellar rotation will inhibit current carriers due to the centrifugal force, there may be no supply of magnetospheric ions, and no anti-phase flux changes are expected from ohmic surface heating. Together with the highly similar properties of the four cool, emission-line white dwarfs, these facts indicate that the chromospheric emission is intrinsic. A tantalizing possibility is that intrinsic chromospheres may manifest in (magnetic) white dwarfs, and in distinct parts of the HR diagram based on structure and composition.



rate research

Read More

Recent Kepler photometry has revealed that about half of white dwarfs (WDs) have periodic, low-level (~ 1e-4 - 1e-3), optical variations. Hubble Space Telescope (HST) ultraviolet spectroscopy has shown that up to about one half of WDs are actively accreting rocky planetary debris, as evidenced by the presence of photospheric metal absorption lines. We have obtained HST ultraviolet spectra of seven WDs that have been monitored for periodic variations, to test the hypothesis that these two phenomena are causally connected, i.e. that the optical periodic modulation is caused by WD rotation coupled with an inhomogeneous surface distribution of accreted metals. We detect photospheric metals in four out of the seven WDs. However, we find no significant correspondence between the existence of optical periodic variability and the detection of photospheric ultraviolet absorption lines. Thus the null hypothesis stands, that the two phenomena are not directly related. Some other source of WD surface inhomogeneity, perhaps related to magnetic field strength, combined with the WD rotation, or alternatively effects due to close binary companions, may be behind the observed optical modulation. We report the marginal detection of molecular hydrogen in WD J1949+4734, only the fourth known WD with detected H_2 lines. We also re-classify J1926+4219 as a carbon-rich He-sdO subdwarf.
131 - J. Nordhaus 2011
Since their initial discovery, the origin of isolated white dwarfs (WDs) with magnetic fields in excess of $sim$1 MG has remained a mystery. Recently, the formation of these high-field magnetic WDs has been observationally linked to strong binary interactions incurred during post-main-sequence evolution. Planetary, brown dwarf or stellar companions located within a few AU of main-sequence stars may become engulfed during the primarys expansion off the main sequence. Sufficiently low-mass companions in-spiral inside a common envelope until they are tidally shredded near the natal white dwarf. Formation of an accretion disk from the disrupted companion provides a source of turbulence and shear which act to amplify magnetic fields and transport them to the WD surface. We show that these disk-generated fields explain the observed range of magnetic field strengths for isolated, high-field magnetic WDs. Additionally, we discuss a high-mass binary analogue which generates a strongly-magnetized WD core inside a pre-collapse, massive star. Subsequent core-collapse to a neutron star may produce a magnetar.
We investigate whether the recently suggested rotation and crystallization driven dynamo can explain the apparent increase of magnetism in old metal polluted white dwarfs. We find that the effective temperature distribution of polluted magnetic white dwarfs is in agreement with most/all of them having a crystallizing core and increased rotational velocities are expected due to accretion of planetary material which is evidenced by the metal absorption lines. We conclude that a rotation and crystallization driven dynamo offers not only an explanation for the different occurrence rates of strongly magnetic white dwarfs in close binaries, but also for the high incidence of weaker magnetic fields in old metal polluted white dwarfs.
In this paper we review the current status of research on the observational and theoretical characteristics of isolated and binary magnetic white dwarfs (MWDs). Magnetic fields of isolated MWDs are observed to lie in the range 10^3-10^9G. While the upper limit cutoff appears to be real, the lower limit is more difficult to investigate. The incidence of magnetism below a few 10^3G still needs to be established by sensitive spectropolarimetric surveys conducted on 8m class telescopes. Highly magnetic WDs tend to exhibit a complex and non-dipolar field structure with some objects showing the presence of higher order multipoles. There is no evidence that fields of highly magnetic WDs decay over time, which is consistent with the estimated Ohmic decay times scales of ~10^11 yrs. MWDs, as a class, also appear to be more massive than their weakly or non-magnetic counterparts. MWDs are also found in binary systems where they accrete matter from a low-mass donor star. These binaries, called magnetic Cataclysmic Variables (MCVs) and comprise about 20-25% of all known CVs. Zeeman and cyclotron spectroscopy of MCVs have revealed the presence of fields in the range $sim 7-230$,MG. Complex field geometries have been inferred in the high field MCVs (the polars) whilst magnetic field strength and structure in the lower field group (intermediate polars, IPs) are much harder to establish. The origin of fields in MWDs is still being debated. While the fossil field hypothesis remains an attractive possibility, field generation within the common envelope of a binary system has been gaining momentum, since it would explain the absence of MWDs paired with non-degenerate companions and also the lack of relatively wide pre-MCVs.
HD189733 is an active K dwarf that is, with its transiting hot Jupiter, among the most studied exoplanetary systems. In this first paper of the Multiwavelength Observations of an eVaporating Exoplanet and its Star (MOVES) program, we present a 2-year monitoring of the large-scale magnetic field of HD189733. The magnetic maps are reconstructed for five epochs of observations, namely June-July 2013, August 2013, September 2013, September 2014, and July 2015, using Zeeman-Doppler Imaging. We show that the field evolves along the five epochs, with mean values of the total magnetic field of 36, 41, 42, 32 and 37 G, respectively. All epochs show a toroidally-dominated field. Using previously published data of Moutou et al. 2007 and Fares et al. 2010, we are able to study the evolution of the magnetic field over 9 years, one of the longest monitoring campaign for a given star. While the field evolved during the observed epochs, no polarity switch of the poles was observed. We calculate the stellar magnetic field value at the position of the planet using the Potential Field Source Surface extrapolation technique. We show that the planetary magnetic environment is not homogeneous over the orbit, and that it varies between observing epochs, due to the evolution of the stellar magnetic field. This result underlines the importance of contemporaneous multi-wavelength observations to characterise exoplanetary systems. Our reconstructed maps are a crucial input for the interpretation and modelling of our MOVES multi-wavelength observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا