No Arabic abstract
Using the astrometry and integrated photometry from the Gaia Early Data Release 3 (EDR3), we map the density variations in the distribution of young Upper Main Sequence (UMS) stars, open clusters and classical Cepheids in the Galactic disk within several kiloparsecs of the Sun. Maps of relative over/under-dense regions for UMS stars in the Galactic disk are derived, using both bivariate kernel density estimators and wavelet transformations. The resulting overdensity maps exhibit large-scale arches, that extend in a clumpy but coherent way over the entire sampled volume, indicating the location of the spiral arms segments in the vicinity of the Sun. Peaks in the UMS overdensity are well-matched by the distribution of young and intrinsically bright open clusters. By applying a wavelet transformation to a sample of classical Cepheids, we find that their overdensities possibly extend the spiral arm segments on a larger scale (~10 kpc from the Sun). While the resulting map based on the UMS sample is generally consistent with previous models of the Sagittarius-Carina spiral arm, the geometry of the arms in the III quadrant (galactic longitudes $180^circ < l < 270^circ$) differs significantly from many previous models. In particular we find that our maps favour a larger pitch angle for the Perseus arm, and that the Local Arm extends into the III quadrant at least 4 kpc past the Suns position, giving it a total length of at least 8 kpc.
Context. The astrometric satellite Gaia is expected to significantly increase our knowledge as to the properties of the Milky Way. The Gaia Early Data Release 3 (Gaia EDR3) provides the most precise parallaxes for many OB stars, which can be used to delineate the Galactic spiral structure. Aims. We investigate the local spiral structure with the largest sample of spectroscopically confirmed young OB stars available to date, and we compare it with what was traced by the parallax measurements of masers. Methods. A sample consisting of three different groups of massive young stars, including O-B2 stars, O-B0 stars and O-type stars with parallax accuracies better than 10% was compiled and used in our analysis. Results. The local spiral structures in all four Galactic quadrants within $approx$5 kpc of the Sun are clearly delineated in detail. The revealed Galactic spiral pattern outlines a clear sketch of nearby spiral arms, especially in the third and fourth quadrants where the maser parallax data are still absent. These O-type stars densify and extend the spiral structure constructed by using the Very Long Baseline Interferometry (VLBI) maser data alone. The clumped distribution of O-type stars also indicates that the Galaxy spiral structure is inhomogeneous.
Using Gaia DR2 astrometry, we map the kinematic signature of the Galactic stellar warp out to a distance of 7 kpc from the Sun. Combining Gaia DR2 and 2MASS photometry, we identify, via a probabilistic approach, 599 494 upper main sequence stars and 12 616 068 giants without the need for individual extinction estimates. The spatial distribution of the upper main sequence stars clearly shows segments of the nearest spiral arms. The large-scale kinematics of both the upper main sequence and giant populations show a clear signature of the warp of the Milky Way, apparent as a gradient of 5-6 km/s in the vertical velocities from 8 to 14 kpc in Galactic radius. The presence of the signal in both samples, which have different typical ages, suggests that the warp is a gravitationally induced phenomenon.
We investigate the morphology and kinematics of the Galactic spiral structure based on a new sample of O- and early B-type stars. We select 6,858 highly confident OB star candidates from the combined data of the VST Photometric H$alpha$ Survey Data Release 2 (VPHAS+ DR2) and the Gaia Data Release 2 (Gaia DR2). Together with the O-B2 stars from the literature, we build a sample consisting of 14,880 O- and early B-type stars, all with Gaia parallax uncertainties smaller than 20 per cent. The new sample, hitherto the largest one of O- and early B-type stars with robust distance and proper motion estimates, covers the Galactic plane of distances up to $sim$ 6 kpc from the Sun. The sample allows us to examine the morphology of the Scutum, Sagittarius, Local and Perseus Arms in great detail. The spiral structure of the Milky Way as traced by O- and early B-type stars shows flocculent patterns. Accurate structure parameters, as well as the means and dispersions of the vertical velocity distributions of the individual Spiral Arms are presented.
Blanco 1, a 100Myr open cluster in the solar neighborhood, is well known for its two 50pc-long tidal tails. Taking Blanco 1 as a reference, we find evidence of early-stage tidal disruption in two other open clusters of ~120Myr: the Pleiades and NGC 2516, via Gaia EDR3 data. These two clusters have a total mass of 2-6 times that of Blanco 1. Despite having a similar age as Blanco 1, the Pleiades and NGC 2516 have a larger fraction of their members bound: 86% of their mass is inside the tidal radius, versus 63% for Blanco 1. However, a correlation between Blanco 1s 50pc-long tidal tails and the kinematic tails in velocity space is also found for the Pleiades and NGC 2516. This evidence supports the idea that the modest elongation seen in the spatial distribution for the Pleiades and NGC 2516 is a result of early-stage tidal disruption.
Context. The physical processes driving the formation of Galactic spiral arms are still under debate. Studies using open clusters favour the description of the Milky Way spiral arms as long-lived structures following the classical density wave theory. Current studies comparing the Gaia DR2 field stars kinematic information of the Solar neighbourhood to simulations, find a better agreement with short-lived arms with a transient behaviour. Aims. Our aim is to provide an observational, data-driven view of the Milky Way spiral structure and its dynamics using open clusters as the main tracers, and to contrast it with simulation-based approaches. We use the most complete catalogue of Milky Way open clusters, with astrometric Gaia EDR3 updated parameters, estimated astrophysical information and radial velocities, to re-visit the nature of the spiral pattern of the Galaxy. Methods. We use a Gaussian mixture model to detect overdensities of open clusters younger than 30 Myr that correspond to the Perseus, Local, Sagittarius and Scutum spiral arms, respectively. We use the birthplaces of the open cluster population younger than 80 Myr to trace the evolution of the different spiral arms and compute their pattern speed. We analyse the age distribution of the open clusters across the spiral arms to explore the differences in the rotational velocity of stars and spiral arms. Results. We are able to increase the range in Galactic azimuth where present-day spiral arms are described, better estimating its parameters by adding 264 young open clusters to the 84 high-mass star-forming regions used so far, thus increasing by a 314% the number of tracers. We use the evolution of the open clusters from their birth positions to find that spiral arms nearly co-rotate with field stars at any given radius, discarding a common spiral pattern speed for the spiral arms explored. [abridged]