Do you want to publish a course? Click here

Unconventional topological transitions in a self-organized magnetic ladder

75   0   0.0 ( 0 )
 Added by Nicholas Sedlmayr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is commonly assumed that topological phase transitions in topological superconductors are accompanied by a closing of the topological gap or a change of the symmetry of the system. We demonstrate that an unconventional topological phase transition with neither gap closing nor a change of symmetry is possible. We consider a nanoscopic length ladder of atoms on a superconducting substrate, comprising self-organized magnetic moments coupled to itinerant electrons. For a range of conditions, the ground state of such a system prefers helical magnetic textures, self-sustaining topologically nontrivial phase. Abrupt changes in the magnetic order as a function of induced superconducting pairing or chemical potential can cause topological phase transitions without closing the topological gap. Furthermore, the ground state prefers either parallel or anti-parallel configurations along the rungs, and the anti-parallel configuration causes an emergent time reversal asymmetry protecting Kramers pairs of Majorana zero modes, but in a BDI topological superconductor. We determine the topological invariant and inspect the boundary Majorana zero modes.



rate research

Read More

We study a chain of magnetic moments exchange coupled to a conventional three dimensional superconductor. In the normal state the chain orders into a collinear configuration, while in the superconducting phase we find that ferromagnetism is unstable to the formation of a magnetic spiral state. Beyond weak exchange coupling the spiral wavevector greatly exceeds the inverse superconducting coherence length as a result of the strong spin-spin interaction mediated through the subgap band of Yu-Shiba-Rusinov states. Moreover, the simple spin-spin exchange description breaks down as the subgap band crosses the Fermi energy, wherein the spiral phase becomes stabilized by the spontaneous opening of a $p-$wave superconducting gap within the band. This leads to the possibility of electron-driven topological superconductivity with Majorana boundary modes using magnetic atoms on superconducting surfaces.
We propose theoretically how unconventional superconducting pairing in a repulsively interacting Hubbard ladder can be enhanced via the application of a Floquet driving. Initially the Hubbard ladder is prepared in its charge-density-wave dominated ground state. A periodic Floquet drive is applied which modulates oppositely the energy offset of the two chains and effectively reduces the tunneling along the rungs. This modulation of the energy offsets might be caused by the excitation of a suitable phononic mode in solids or a superlattice modulation in cold atomic gases. We use state-of-the-art density matrix renormalization group methods to monitor the resulting real-time dynamics of the system. We find an enormous enhancement of the unconventional superconducting pair correlations by approximately one order of magnitude.
Proximity-induced superconductivity in three dimensional (3D) topological insulators forms a new quantum phase of matter and accommodates exotic quasiparticles such as Majorana bound states. One of the biggest drawbacks of the commonly studied 3D topological insulators is the presence of conducting bulk that obscures both surface states and low energy bound states. Introducing superconductivity in topological Kondo insulators such as SmB$_6$, however, is promising due to their true insulating bulk at low temperatures. In this work, we develop an unconventional Josephson junction by coupling superconducting Nb leads to the surface states of a SmB$_6$ crystal. We observe a robust critical current at low temperatures that responds to the application of an out-of-plane magnetic field with significant deviations from usual Fraunhofer patterns. The appearance of Shaphiro steps under microwave radiation gives further evidence of a Josephson effect. Moreover, we explore the effects of Kondo breakdown in our devices, such as ferromagnetism at the surface and anomalous temperature dependence of supercurrent. Particularly, the magnetic diffraction patterns show an anomalous hysteresis with the field sweep direction suggesting the coexistence of magnetism with superconductivity at the SmB$_6$ surface. The experimental work will advance the current understanding of topologically nontrivial superconductors and emergent states associated with such unconventional superconducting phases.
Topological materials have potential applications for quantum technologies. Non-interacting topological materials, such as e.g., topological insulators and superconductors, are classified by means of fundamental symmetry classes. It is instead only partially understood how interactions affect topological properties. Here, we discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions. The system is composed by soft-core bosons that interact via global correlated hopping in a one-dimensional lattice. The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry, the corresponding phase resembles nontrivial states of the celebrated Su-Schriefer-Heeger model. Like the fermionic Peierls instability, the emerging quantum phase is a topological insulator and is found at half fillings. Originating from quantum interference, this topological phase is found in exact density-matrix renormalization group calculations and is entirely absent in the mean-field approach. We argue that these dynamics can be realized in existing experimental platforms, such as cavity quantum electrodynamics setups, where the topological features can be revealed in the light emitted by the resonator.
Topological insulators (TIs) having intrinsic or proximity-coupled s-wave superconductivity host Majorana zero modes (MZMs) at the ends of vortex lines. The MZMs survive up to a critical doping of the TI at which there is a vortex phase transition that eliminates the MZMs. In this work, we show that the phenomenology in higher-order topological insulators (HOTIs) can be qualitatively distinct. In particular, we find two distinct features. (i) We find that vortices placed on the gapped (side) surfaces of the HOTI, exhibit a pair of phase transitions as a function of doping. The first transition is a surface phase transition after which MZMs appear. The second transition is the well-known vortex phase transition. We find that the surface transition appears because of the competition between the superconducting gap and the local $mathcal{T}$-breaking gap on the surface. (ii) We present numerical evidence that shows strong variation of the critical doping for the vortex phase transition as the center of the vortex is moved toward or away from the hinges of the sample. We believe our work provides new phenomenology that can help identify HOTIs, as well as illustrating a promising platform for the realization of MZMs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا