Elastoplasticity Mediates Dynamical Heterogeneity Below the Mode-Coupling Temperature


Abstract in English

As liquids approach the glass transition temperature, dynamical heterogeneity emerges as a crucial universal feature of their behavior. Dynamic facilitation, where local motion triggers further motion nearby, plays a major role in this phenomenon. Here we show that long-range, elastically-mediated facilitation appears below the mode-coupling temperature, adding to the short-range component present at all temperatures. Our results suggest deep connections between the supercooled liquid and glass states, and pave the way for a deeper understanding of dynamical heterogeneity in glassy systems.

Download