No Arabic abstract
The reconstruction of sparse signal is an active area of research. Different from a typical i.i.d. assumption, this paper considers a non-independent prior of group structure. For this more practical setup, we propose EM-aided HyGEC, a new algorithm to address the stability issue and the hyper-parameter issue facing the other algorithms. The instability problem results from the ill condition of the transform matrix, while the unavailability of the hyper-parameters is a ground truth that their values are not known beforehand. The proposed algorithm is built on the paradigm of HyGAMP (proposed by Rangan et al.) but we replace its inner engine, the GAMP, by a matrix-insensitive alternative, the GEC, so that the first issue is solved. For the second issue, we take expectation-maximization as an outer loop, and together with the inner engine HyGEC, we learn the value of the hyper-parameters. Effectiveness of the proposed algorithm is also verified by means of numerical simulations.
In this paper, we propose a generalized expectation consistent signal recovery algorithm to estimate the signal $mathbf{x}$ from the nonlinear measurements of a linear transform output $mathbf{z}=mathbf{A}mathbf{x}$. This estimation problem has been encountered in many applications, such as communications with front-end impairments, compressed sensing, and phase retrieval. The proposed algorithm extends the prior art called generalized turbo signal recovery from a partial discrete Fourier transform matrix $mathbf{A}$ to a class of general matrices. Numerical results show the excellent agreement of the proposed algorithm with the theoretical Bayesian-optimal estimator derived using the replica method.
In cell-free massive MIMO networks, an efficient distributed detection algorithm is of significant importance. In this paper, we propose a distributed expectation propagation (EP) detector for cell-free massive MIMO. The detector is composed of two modules, a nonlinear module at the central processing unit (CPU) and a linear module at the access point (AP). The turbo principle in iterative decoding is utilized to compute and pass the extrinsic information between modules. An analytical framework is then provided to characterize the asymptotic performance of the proposed EP detector with a large number of antennas. Simulation results will show that the proposed method outperforms the distributed detectors in terms of bit-error-rate.
Many real world tasks such as reasoning and physical interaction require identification and manipulation of conceptual entities. A first step towards solving these tasks is the automated discovery of distributed symbol-like representations. In this paper, we explicitly formalize this problem as inference in a spatial mixture model where each component is parametrized by a neural network. Based on the Expectation Maximization framework we then derive a differentiable clustering method that simultaneously learns how to group and represent individual entities. We evaluate our method on the (sequential) perceptual grouping task and find that it is able to accurately recover the constituent objects. We demonstrate that the learned representations are useful for next-step prediction.
Phase retrieval (PR) is an important component in modern computational imaging systems. Many algorithms have been developed over the past half century. Recent advances in deep learning have opened up a new possibility for robust and fast PR. An emerging technique, called deep unfolding, provides a systematic connection between conventional model-based iterative algorithms and modern data-based deep learning. Unfolded algorithms, powered by data learning, have shown remarkable performance and convergence speed improvement over the original algorithms. Despite their potential, most existing unfolded algorithms are strictly confined to a fixed number of iterations when employing layer-dependent parameters. In this study, we develop a novel framework for deep unfolding to overcome the existing limitations. Even if our framework can be widely applied to general inverse problems, we take PR as an example in the paper. Our development is based on an unfolded generalized expectation consistent signal recovery (GEC-SR) algorithm, wherein damping factors are left for data-driven learning. In particular, we introduce a hypernetwork to generate the damping factors for GEC-SR. Instead of directly learning a set of optimal damping factors, the hypernetwork learns how to generate the optimal damping factors according to the clinical settings, thus ensuring its adaptivity to different scenarios. To make the hypernetwork work adapt to varying layer numbers, we use a recurrent architecture to develop a dynamic hypernetwork, which generates a damping factor that can vary online across layers. We also exploit a self-attention mechanism to enhance the robustness of the hypernetwork. Extensive experiments show that the proposed algorithm outperforms existing ones in convergence speed and accuracy, and still works well under very harsh settings, that many classical PR algorithms unstable or even fail.
Spatial generalized linear mixed models (SGLMMs) are popular and flexible models for non-Gaussian spatial data. They are useful for spatial interpolations as well as for fitting regression models that account for spatial dependence, and are commonly used in many disciplines such as epidemiology, atmospheric science, and sociology. Inference for SGLMMs is typically carried out under the Bayesian framework at least in part because computational issues make maximum likelihood estimation challenging, especially when high-dimensional spatial data are involved. Here we provide a computationally efficient projection-based maximum likelihood approach and two computationally efficient algorithms for routinely fitting SGLMMs. The two algorithms proposed are both variants of expectation maximization (EM) algorithm, using either Markov chain Monte Carlo or a Laplace approximation for the conditional expectation. Our methodology is general and applies to both discrete-domain (Gaussian Markov random field) as well as continuous-domain (Gaussian process) spatial models. Our methods are also able to adjust for spatial confounding issues that often lead to problems with interpreting regression coefficients. We show, via simulation and real data applications, that our methods perform well both in terms of parameter estimation as well as prediction. Crucially, our methodology is computationally efficient and scales well with the size of the data and is applicable to problems where maximum likelihood estimation was previously infeasible.