No Arabic abstract
We present $^{12}$CO ($J$ = 2-1), $^{13}$CO ($J$ = 2-1), and C$^{18}$O ($J$ = 2-1) observations toward GMC-8, one of the most massive giant molecular clouds (GMCs) in M33 using ALMA with an angular resolution of 0.44 $times$ 0.27 ($sim$2 pc $times$ 1pc). The earlier studies revealed that its high-mass star formation is inactive in spite of a sufficient molecular reservoir with the total mass of $sim$10$^{6}$ $M_{odot}$. The high-angular resolution data enable us to resolve this peculiar source down to a molecular clump scale. One of the GMCs remarkable features is that a round-shaped gas structure (the Main cloud ) extends over $sim$50 pc scale, which is quite different from the other two active star-forming GMCs dominated by remarkable filaments/shells obtained by our series of studies in M33. The fraction of the relatively dense gas traced by the $^{13}$CO data with respect to the total molecular mass is only $sim$2 %, suggesting that their spatial structure and the density are not well developed to reach an active star formation. The CO velocity analysis shows that the GMC is composed of a single component as a whole, but we found some local velocity fluctuations in the Main cloud and extra blueshifted components at the outer regions. Comparing the CO with previously published large-scale H I data, we suggest that an external atomic gas flow supplied a sufficient amount of material to grow the GMC up to $sim$10$^6$ $M_{odot}$.
We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M33 using $^{12}$CO($J$ = 2-1), $^{13}$CO($J$ = 2-1), and C$^{18}$O($J$ = 2-1) line emission at a spatial resolution of $sim$2 pc. There are two individual molecular clouds with a systematic velocity difference of $sim$6 km s$^{-1}$. Three continuum sources representing up to $sim$10 high-mass stars with the spectral types of B0V-O7.5V are embedded within the densest parts of molecular clouds bright in the C$^{18}$O($J$ = 2-1) line emission. The two molecular clouds show a complementary spatial distribution with a spatial displacement of $sim$6.2 pc, and show a V-shaped structure in the position-velocity diagram. These observational features traced by CO and its isotopes are consistent with those in high-mass star-forming regions created by cloud-cloud collisions in the Galactic and Magellanic Cloud HII regions. Our new finding in M33 indicates that the cloud-cloud collision is a promising process to trigger high-mass star formation in the Local Group.
We report molecular line and continuum observations toward one of the most massive giant molecular clouds (GMCs), GMC-16, in M33 using ALMA with an angular resolution of 0$$44 $times$ 0$$27 ($sim$2 pc $times$ 1 pc). We have found that the GMC is composed of several filamentary structures in $^{12}$CO and $^{13}$CO ($J$ = 2-1). The typical length, width, and total mass are $sim$50-70 pc, $sim$5-6 pc, and $sim$10$^{5}$ $M_{odot}$, respectively, which are consistent with those of giant molecular filaments (GMFs) as seen in the Galactic GMCs. The elongations of the GMFs are roughly perpendicular to the direction of the galaxys rotation, and several H$;${sc ii} regions are located at the downstream side relative to the filaments with an offset of $sim$10-20 pc. These observational results indicate that the GMFs are considered to be produced by a galactic spiral shock. The 1.3 mm continuum and C$^{18}$O ($J$ = 2-1) observations detected a dense clump with the size of $sim$2 pc at the intersection of several filamentary clouds, which is referred to as the $$hub filament,$$ possibly formed by a cloud-cloud collision. A strong candidate for protostellar outflow in M33 has also been identified at the center of the clump. We have successfully resolved the parsec-scale local star formation activity in which the galactic scale kinematics may induce the formation of the parental filamentary clouds.
We present the results of ALMA observations in $^{12}$CO($J=2-1$), $^{13}$CO($J=2-1$), and C$^{18}$O($J=2-1$) lines and 1.3 mm continuum emission toward a massive ($sim 10^6 M_{odot}$) giant molecular cloud associated with the giant H II region NGC 604 in one of the nearest spiral galaxy M33 at an angular resolution of 0.44 $times$ 0.27 (1.8 pc $times$ 1.1 pc). The $^{12}$CO and $^{13}$CO images show highly complicated molecular structures composed of a lot of filaments and shells whose lengths are 5 -- 20 pc. We found three 1.3 mm continuum sources as dense clumps at edges of two shells and also at an intersection of several filaments. We examined the velocity structures of $^{12}$CO($J=2-1$) emission in the shells and filaments containing dense clumps, and concluded that expansion of the H II regions cannot explain the formation of such dense cores. Alternatively, we suggest that cloud--cloud collisions induced by an external H I gas flow and the galactic rotation compressed the molecular material into dense filaments/shells as ongoing high-mass star formation sites. We propose that multiple gas converging/colliding events with a velocity of a few tens km s$^{-1}$ are necessary to build up NGC 604, the most significant cluster-forming complex in the Local Group of galaxies.
Context. Measuring star formation at a local scale is important to constrain star formation laws. Yet, it is not clear whether and how the measure of star formation is affected by the spatial scale at which a galaxy is observed. Aims. We want to understand the impact of the resolution on the determination of the spatially resolved star formation rate (SFR) and other directly associated physical parameters such as the attenuation. Methods. We have carried out a multi-scale, pixel-by-pixel study of the nearby galaxy M33. Assembling FUV, Halpha, 8, 24, 70, and 100 micron maps, we have systematically compared the emission in individual bands with various SFR estimators from a resolution of 33 pc to 2084 pc. Results. We have found that there are strong, scale-dependent, discrepancies up to a factor 3 between monochromatic SFR estimators and Halpha+24 micron. The scaling factors between individual IR bands and the SFR show a strong dependence on the spatial scale and on the intensity of star formation. Finally, strong variations of the differential reddening between the nebular emission and the stellar continuum are seen, depending on the specific SFR (sSFR) and on the resolution. At the finest spatial scales, there is little differential reddening at high sSFR. The differential reddening increases with decreasing sSFR. At the coarsest spatial scales the differential reddening is compatible with the canonical value found for starburst galaxies. Conclusions. Our results confirm that monochromatic estimators of the SFR are unreliable at scales smaller than 1 kpc. Furthermore, the extension of local calibrations to high redshift galaxies presents non-trivial challenges as the properties of these systems may be poorly known.
We report on a multi parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M33. A catalog of GMCs identifed in 12CO(J=3-2) was used to compile associated 12CO(J=1-0), dust, stellar mass and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components PC1 and PC2 which retain 75% of the information in the original dataset. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (<10Myr) GMCs occupy a distinct region in the PC1-PC2 plane, with lower ISM content and star formation activity compared to intermediate age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ~10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt Kennicutt relation with the molecular gas term substituted by dust.