No Arabic abstract
Whereas electron-phonon scattering typically relaxes the electrons momentum in metals, a perpetual exchange of momentum between phonons and electrons conserves total momentum and can lead to a coupled electron-phonon liquid with unique transport properties. This theoretical idea was proposed decades ago and has been revisited recently, but the experimental signatures of an electron-phonon liquid have been rarely reported. We present evidence of such a behavior in a transition metal ditetrelide, NbGe$_2$, from three different experiments. First, quantum oscillations reveal an enhanced quasiparticle mass, which is unexpected in NbGe$_2$ due to weak electron-electron correlations, hence pointing at electron-phonon interactions. Second, resistivity measurements exhibit a discrepancy between the experimental data and calculated curves within a standard Fermi liquid theory. Third, Raman scattering shows anomalous temperature dependence of the phonon linewidths which fits an empirical model based on phonon-electron coupling. We discuss structural factors, such as chiral symmetry, short metallic bonds, and a low-symmetry coordination environment as potential sources of coupled electron-phonon liquids.
We report on strong coupling of the charge carrier plasmon $omega_{PL}$ in graphene with the surface optical phonon $omega_{SO}$ of the underlying SiC(0001) substrate with low electron concentration ($n=1.2times 10^{15}$ $cm^{-3}$) in the long wavelength limit ($q_parallel rightarrow 0$). Energy dependent energy-loss spectra give for the first time clear evidence of two coupled phonon-plasmon modes $omega_pm$ separated by a gap between $omega_{SO}$ ($q_parallel rightarrow 0$) and $omega_{TO}$ ($q_parallel >> 0$), the transverse optical phonon mode, with a Fano-type shape, in particular for higher primary electron energies ($E_0 ge 20eV$). A simplified model based on dielectric theory is able to simulate our energy - loss spectra as well as the dispersion of the two coupled phonon-plasmon modes $omega_pm$. In contrast, Liu and Willis [1] postulate in their recent publication no gap and a discontinuous dispersion curve with a one-peak structure from their energy-loss data.
We have utilized time-domain magneto-terahertz spectroscopy to investigate the low frequency optical response of topological insulator Cu$_{0.02}$Bi$_2$Se$_3$ and Bi$_2$Se$_3$ films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu$_{0.02}$Bi$_2$Se$_3$ induces a true bulk insulator with only a textit{single} type of conduction with total sheet carrier density $sim4.9times10^{12}/$cm$^{2}$ and mobility as high as 4000 cm$^{2}/$V$cdot$s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on top and bottom of the film with a chemical potential $sim$145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero field Drude conductance. In contrast, in normal Bi$_2$Se$_3$ films two conduction channels were observed and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk/2DEG states. Our high-resolution Faraday rotation spectroscopy on Cu$_{0.02}$Bi$_2$Se$_3$ paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push chemical potential in the lowest Landau Level.
Chemically exfoliated nanoscale few-layer thin Li$_x$CoO$_2$ samples are studied as function of annealing at various temperatures, using transmission electron microscopy (TEM) and Electron Energy Loss Spectroscopies (EELS), probing the O-K, Co-L$_{2,3}$ spectra along with low energy interband transitions. These spectra are compared with first-principles DFT calculations of -Im$[varepsilon^{-1}(q,omega)]$ and O-2p Partial Densities of States weighted by dipole matrix elements with the core wavefunction and including the O-1s core-hole and with known trends of the L$_2$/L$_3$ peak ratio to average Co valence. Trends in these spectra under the annealing procedures are established and correlated with the structural phase changes observed from diffraction TEM and High Resolution TEM images. The results are also correlated with conductivity measurements on samples subjected to the same annealing procedures. A gradual disordering of the Li and Co cations in the lattice is observed starting from a slight distortion of the pure LiCoO$_2$ $Rbar{3}m$ to $C2/m$ due to the lower Li content, followed by a $P2/m$ phase forming at 200$^o$C indicative of Li-vacancy ordering, formation of a spinel type $Fdbar{3}m$ phase around 250$^o$C and ultimately a rocksalt type $Fmbar{3}m$ phase above 350$^o$C. This disordering leads to a lowering of the band gap as established by low energy EELS. The O-K spectra of the rocksalt phase are only reproduced by a calculation for pure CoO and not for a model with random distribution of Li and Co. This indicates that there may be a loss of Li from the rocksalt regions of the sample at these higher temperatures. The conductivity measurements indicate a gradual drop in conductivity above 200$^o$C, which is clearly related to the more Li-Co interdiffused phases, in which a low-spin electronic structure is no longer valid and stronger correlation effects are expected.
We show that hole states in recently discovered single-layer InSe are strongly renormalized by the coupling with acoustic phonons. The coupling is enhanced significantly at moderate hole doping ($sim$10$^{13}$ cm$^{-2}$) due to hexagonal warping of the Fermi surface. While the system remains dynamically stable, its electron-phonon spectral function exhibits sharp low-energy resonances, leading to the formation of satellite quasiparticle states near the Fermi energy. Such many-body renormalization is predicted to have two important consequences. First, it significantly suppresses charge carrier mobility reaching $sim$1 cm$^2$V$^{-1}$s$^{-1}$ at $100$ K in a freestanding sample. Second, it gives rise to unusual temperature-dependent optical excitations in the midinfrared region. Relatively small charge carrier concentrations and realistic temperatures suggest that these excitations may be observed experimentally.
Optical spectra of two-dimensional transition-metal dichalcogenides (TMDC) are influenced by complex multi-particle excitonic states. Their theoretical analysis requires solving the many-body problem, which in most cases, is prohibitively complicated. In this work, we calculate the optical spectra by exact diagonalization of the three-particle Hamiltonian within the Tamm-Dancoff approximation where the doping effects are accounted for via the Pauli blocking mechanism, modelled by a discretized mesh in the momentum space. The single-particle basis is extracted from the {it ab initio} calculations. Obtained three-particle eigenstates and the corresponding transition dipole matrix elements are used to calculate the linear absorption spectra as a function of the doping level. Results for negatively doped MoS$_2$ monolayer (ML) are in an excellent quantitative agreement with the available experimental data, validating our approach. The results predict additional spectral features due to the intervalley exciton that is optically dark in an undoped ML but is brightened by the doping. Our approach can be applied to a plethora of other atomically thin semiconductors, where the doping induced brightening of the many-particle states is also anticipated.