We investigate an alternative quantization of R-NS string theory. In the alternative quantization, we define the distinct vacuum for the left-moving mode and the right-moving mode by exchanging the role of creation operators and annihilation operators in the left-moving sector. The resulting string theory has only a finite number of propagating degrees of freedom. We show that an appropriate choice of the GSO projection makes the theory tachyon free. The spectrum coincides with the massless sector of type IIA or type IIB superstring theory without any massive excitations.
An alternative parameterization of R-matrix theory is presented which is mathematically equivalent to the standard approach, but possesses features which simplify the fitting of experimental data. In particular there are no level shifts and no boundary-condition constants which allows the positions and partial widths of an arbitrary number levels to be easily fixed in an analysis. These alternative parameters can be converted to standard R-matrix parameters by a straightforward matrix diagonalization procedure. In addition it is possible to express the collision matrix directly in terms of the alternative parameters.
Classical rotating closed string are folded strings. At the folding points the scalar curvature associated with the induced metric diverges. As a consequence one cannot properly quantize the fluctuations around the classical solution since there is no complete set of normalizable eigenmodes. Furthermore in the non-critical effective string action of Polchinski and Strominger, there is a divergence associated with the folds. We overcome this obstacle by putting a massive particle at each folding point which can be used as a regulator. Using this method we compute the spectrum of quantum fluctuations around the rotating string and the intercept of the leading Regge trajectory. The results we find are that the intercepts are $a=1$ and $a=2$ for the open and closed string respectively, independent of the target space dimension. We argue that in generic theories with an effective string description, one can expect corrections from finite masses associated with either the endpoints of an open string or the folding points on a closed string. We compute explicitly the corrections in the presence of these masses.
We study the finite size effect of rigidly rotating strings and closed folded strings in $AdS_3times S^3$ geometry with NS-NS B-field. We calculate the classical exponential corrections to the dispersion relation of infinite size giant magnon and single spike in terms of Lambert $mathbf{W}-$function. We also write the analytic expression for the dispersion relation of finite size Gubser-Klebanov-Polyakov (GKP) string in the form of Lambert $mathbf{W}-$function.
In this letter, the open string is quantized in a time dependent black hole background. The geometry is defined through an adiabatic approximation of the Vaydia metric. The worldsheet two-point function is derived and it is shown to have the same type of singularity as the flat space one. However, the equal times two-point function depends on the particular Cauchy surface where the worldsheet fields are defined. Finite temperature effects are incorporated through the Liouville-von Neumann approach to non equilibrium thermodynamics.
Dark matter effects may be attributed to interactions between the Machian strings connecting every pair of elementary particles in the observable Universe. A simple model for the interaction between Machian strings is proposed. In the early Universe, the Machian strings of a density perturbation had a spherically symmetric distribution and the interaction with the Machian strings of a test particle is found to give a multiple of the Newtonian gravitational acceleration. In a strong gravitational field, the interaction between Machian strings tends to a constant limit in order to ensure the absence of dark matter effects in the Solar System. Dark matter effects on a galactic scale may be attributed to a change in the distribution of the Machian strings around a galaxy during the process of galaxy formation. The interaction between the Machian strings of a test mass and the Machian strings of a galaxy is considered in detail and the MOND phenomenology for galaxy rotation curves is obtained.