Do you want to publish a course? Click here

Diffractive rho + lepton pair production at an electron-ion collider

78   0   0.0 ( 0 )
 Added by Wim Cosyn
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In high energy electron-ion colliders, a new way to probe nucleon structure becomes available through diffractive reactions, where the incident particle produces a very energetic almost forward particle. QCD describes these reactions as due to the exchange of a Pomeron which may be perturbatively described as a dressed two-gluon state, provided a hard scale allows the factorization of the amplitude in terms of two impact factors convoluted with a Pomeron propagator. We consider here a process where such a description allows to access hadronic structure in terms of the generalized parton distributions, namely the electroproduction of a forward $rho$ meson and a timelike deeply virtual photon, separated by a large rapidity gap. We explore the dependence of the cross section on the kinematic variables and study the dependence on the non-perturbative inputs (generalized parton distributions, distribution amplitude). Our leading order studies show the cross section is mainly sensitive to the GPD model input, but the small size of the cross sections could prohibit straightforward analysis of this process at planned facilities.



rate research

Read More

We discuss two collider processes which combine a diffractively produced $rho$ meson separated by a large rapidity gap from a hard exclusive scattering of a Pomeron on a nucleon, giving rise to a lepton pair or to a second meson. These two processes probe the nucleon quark content described by generalized parton distributions in a very specific way.
We calculate azimuthal correlations between the exclusively produced vector meson and the scattered electron in Deep Inelastic Scattering processes at the future Electron-Ion Collider (EIC). We identify kinematical and intrinsic contributions to these correlations, and show that the correlations are sensitive to the non-trivial correlations in the gluon distribution of the target. Realistic predictions at the EIC kinematics are provided using two different approaches to describe the dipole-proton interaction at relatively small $x$.
We provide a comprehensive overview of transversely polarized $Lambda$ production at the future Electron-Ion Collider (EIC). In particular, we study both spontaneous transverse $Lambda$ polarization as well as the transverse spin transfer within the Transverse Momentum Dependent (TMD) factorization region. To describe spontaneous $Lambda$ polarization, we consider the contribution from the TMD Polarizing Fragmentation Function (TMD PFF). Similarly, we study the contribution of the transverse spin transfer originating from the transversity TMD fragmentation function (TMD FF). We provide projections for the statistical uncertainties in the corresponding spin observables at the future EIC. Using these statistical uncertainties, we characterize the role that the future EIC will play in constraining these distributions. We perform an impact study in the semi-inclusive deep inelastic scattering process for spontaneous $Lambda$ polarization with a proton beam. We find that the projected experimental data leads to a significant decrease in the uncertainties for the $u$ and sea TMD PFFs. Furthermore, to access the impact of the EIC on the transversity TMD FF, we perform the first extraction of the transversity TMD FF from the recent COMPASS data. We compare the statistical uncertainties of the future EIC with the theoretical uncertainties from our extraction and find that the EIC could have a significant role in constraining this distribution. Finally, we also provide projections for both spontaneous $Lambda$ polarization as well as the transverse spin transfer inside the jets in back-to-back electron-jet production at the EIC.
We study all the possible spin asymmetries that can arise in back-to-back electron-jet production, $eprightarrow e+text{jet}+X$, as well as the associated jet fragmentation process, $eprightarrow e+ text{jet} (h)+X$, in electron-proton collisions. We derive the factorization formalism for these spin asymmetries and perform the corresponding phenomenology for the kinematics relevant to the future electron ion collider. In the case of unpolarized electron-proton scattering, we also give predictions for azimuthal asymmetries for the HERA experiment. This demonstrates that electron-jet production is an outstanding process for probing unpolarized and polarized transverse momentum dependent parton distribution functions and fragmentation functions.
We propose to use transverse momentum $p_T$ distribution of $J/psi$ production at the future Electron Ion Collider (EIC) to explore the production mechanism of heavy quarkonia in high energy collisions. We apply QCD and QED collinear factorization to the production of a $cbar{c}$ pair at high $p_T$, and non-relativistic QCD factorization to the hadronization of the pair to a $J/psi$. We evaluate $J/psi$ $p_T$-distribution at both leading and next-to-leading order in strong coupling, and show that production rates for various color-spin channels of a $cbar{c}$ pair in electron-hadron collisions are very different from that in hadron-hadron collisions, which provides a strong discriminative power to determine various transition rates for the pair to become a $J/psi$. We predict that the $J/psi$ produced in electron-hadron collisions is likely unpolarized, and the production is an ideal probe for gluon distribution of colliding hadron (or nucleus). We find that the $J/psi$ production is dominated by the color-octet channel, providing an excellent probe to explore the gluon medium in large nuclei at the EIC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا