Do you want to publish a course? Click here

Momentum-Resolved Visualization of Electronic Evolution in Doping a Mott Insulator

153   0   0.0 ( 0 )
 Added by Xingjiang Zhou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

High temperature superconductivity in cuprates arises from doping a parent Mott insulator by electrons or holes. A central issue is how the Mott gap evolves and the low-energy states emerge with doping. Here we report angle-resolved photoemission spectroscopy measurements on a cuprate parent compound by sequential in situ electron doping. The chemical potential jumps to the bottom of the upper Hubbard band upon a slight electron doping, making it possible to directly visualize the charge transfer band and the full Mott gap region. With increasing doping, the Mott gap rapidly collapses due to the spectral weight transfer from the charge transfer band to the gapped region and the induced low-energy states emerge in a wide energy range inside the Mott gap. These results provide key information on the electronic evolution in doping a Mott insulator and establish a basis for developing microscopic theories for cuprate superconductivity.



rate research

Read More

130 - M. P. M. Dean , Yue Cao , X. Liu 2016
Measuring how the magnetic correlations throughout the Brillouin zone evolve in a Mott insulator as charges are introduced dramatically improved our understanding of the pseudogap, non-Fermi liquids and high $T_C$ superconductivity. Recently, photoexcitation has been used to induce similarly exotic states transiently. However, understanding how these states emerge has been limited because of a lack of available probes of magnetic correlations in the time domain, which hinders further investigation of how light can be used to control the properties of solids. Here we implement magnetic resonant inelastic X-ray scattering at a free electron laser, and directly determine the magnetization dynamics after photo-doping the Mott insulator Sr$_2$IrO$_4$. We find that the non-equilibrium state 2~ps after the excitation has strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. The magnetism recovers its two-dimensional (2D) in-plane Neel correlations on a timescale of a few ps, while the three-dimensional (3D) long-range magnetic order restores over a far longer, fluence-dependent timescale of a few hundred ps. The dramatic difference in these two timescales, implies that characterizing the dimensionality of magnetic correlations will be vital in our efforts to understand ultrafast magnetic dynamics.
122 - Y. D. Wang , W. L. Yao , Z. M. Xin 2020
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics that support a quantum spin liquid state.Here, we determine the electronic and structural properties of 1T-TaS$_2$ using angle-resolved photoemission spectroscopy and X-Ray diffraction. At low temperatures, the 2$pi$/2c-periodic band dispersion, along with half-integer-indexed diffraction peaks along the c axis, unambiguously indicates that the ground state of 1T-TaS$_2$ is a band insulator with interlayer dimerization. Upon heating, however, the system undergoes a transition into a Mott insulating state, which only exists in a narrow temperature window. Our results refute the idea of searching for quantum magnetism in 1T-TaS$_2$ only at low temperatures, and highlight the competition between on-site Coulomb repulsion and interlayer hopping as a crucial aspect for understanding the materials electronic properties.
Using the time-dependent density-matrix renormalization group (tDMRG), we study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expected. By combining these results with the well-known single-spin-species electron-hole transformation in the Hubbard model, we predict an analogous spin Andreev reflection in metal-Mott insulator heterostructures. This effect is numerically confirmed using 1D tDMRG, but it is expected to be present also in higher dimensions, as well as in more general Hamiltonians. We present an intuitive picture of the spin reflection, analogous to that of Andreev reflection at metal-superconductors interfaces. This allows us to discuss a novel antiferromagnetic proximity effect. Possible experimental realizations are discussed.
94 - Gang Chen 2020
We point out the generic competition between the Hunds coupling and the spin-orbit coupling in correlated materials, and this competition leads to an electronic dilemma between the Hunds metal and the relativistic insulators. Hunds metals refer to the fate of the would-be insulators where the Hunds coupling suppresses the correlation and drives the systems into correlated metals. Relativistic Mott insulators refer to the fate of the would-be metals where the relativistic spin-orbit coupling enhances the correlation and drives the systems into Mott insulators. These contradictory trends are naturally present in many correlated materials. We study the competition between Hunds coupling and spin-orbit coupling in correlated materials and explore the interplay and the balance from these two contradictory trends. The system can become a spin-orbit-coupled Hunds metal or a Hunds assisted relativistic Mott insulator. Our observation could find a broad application and relevance to many correlated materials with multiple orbitals.
The correlation-driven Mott transition is commonly characterized by a drop in resistivity across the insulator-metal phase boundary; yet, the complex permittivity provides a deeper insight into the microscopic nature. We investigate the frequency- and temperature-dependent dielectric response of the Mott insulator $kappa$-(BEDT-TTF)$_{2}$-Cu$_2$(CN)$_3$ when tuning from a quantum spin liquid into the Fermi-liquid state by applying external pressure and chemical substitution of the donor molecules. At low temperatures the coexistence region at the first-order transition leads to a strong enhancement of the quasi-static dielectric constant $epsilon_1$ when the effective correlations are tuned through the critical value. Several dynamical regimes are identified around the Mott point and vividly mapped through pronounced permittivity crossovers. All experimental trends are captured by dynamical mean-field theory of the single-band Hubbard model supplemented by percolation theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا