Active polymer rings: activity-induced collapse and dynamical arrest


Abstract in English

We investigate, using numerical simulations, the conformations of isolated active ring polymers. We find that the their behaviour depends crucially on their size: short rings ($N lesssim$ 100) are swelled whereas longer rings ($N gtrsim$ 200) collapse, at sufficiently high activity. By investigating the non-equilibrium process leading to the steady state, we find a universal route driving both outcomes; we highlight the central role of steric interactions, at variance with linear chains, and of topology conservation. We further show that the collapsed rings are arrested by looking at different observables, all underlining the presence of an extremely long time scales at the steady state, associated with the internal dynamics of the collapsed section. Finally, we found that is some circumstances the collapsed state spins about its axis.

Download