Nuclear magnetic resonance (NMR) spectroscopy usually requires high magnetic fields to create spectral resolution among different proton species. At low fields, chemical shift dispersion is insufficient to separate the species, and the spectrum exhibits just a single line. In this work, we demonstrate that spectra can nevertheless be acquired at low field using a novel pulse sequence called spin-lock induced crossing (SLIC). This probes energy level crossings induced by a weak spin-locking pulse and produces a unique J-coupling spectrum for most organic molecules. Unlike other forms of low-field J-coupling spectroscopy, our technique does not require the presence of heteronuclei and can be used for most compounds in their native state. We performed SLIC spectroscopy on a number of small molecules at 276 kHz and 20.8 MHZ, and we show that SLIC spectra can be simulated in good agreement with measurements.