DEUS: A Data-driven Approach to Estimate User Satisfaction in Multi-turn Dialogues


Abstract in English

Digital assistants are experiencing rapid growth due to their ability to assist users with day-to-day tasks where most dialogues are happening multi-turn. However, evaluating multi-turn dialogues remains challenging, especially at scale. We suggest a context-sensitive method to estimate the turn-level satisfaction for dialogue considering various types of user preferences. The costs of interactions between users and dialogue systems are formulated using a budget consumption concept. We assume users have an initial interaction budget for a dialogue formed based on the task complexity and that each turn has a cost. When the task is completed, or the budget has been exhausted, users quit the dialogue. We demonstrate our methods effectiveness by extensive experimentation with a simulated dialogue platform and real multi-turn dialogues.

Download