No Arabic abstract
A desirable goal for autonomous agents is to be able to coordinate on the fly with previously unknown teammates. Known as ad hoc teamwork, enabling such a capability has been receiving increasing attention in the research community. One of the central challenges in ad hoc teamwork is quickly recognizing the current plans of other agents and planning accordingly. In this paper, we focus on the scenario in which teammates can communicate with one another, but only at a cost. Thus, they must carefully balance plan recognition based on observations vs. that based on communication. This paper proposes a new metric for evaluating how similar are two policies that a teammate may be following - the Expected Divergence Point (EDP). We then present a novel planning algorithm for ad hoc teamwork, determining which query to ask and planning accordingly. We demonstrate the effectiveness of this algorithm in a range of increasingly general communication in ad hoc teamwork problems.
The planning domain has experienced increased interest in the formal synthesis of decision-making policies. This formal synthesis typically entails finding a policy which satisfies formal specifications in the form of some well-defined logic, such as Linear Temporal Logic (LTL) or Computation Tree Logic (CTL), among others. While such logics are very powerful and expressive in their capacity to capture desirable agent behavior, their value is limited when deriving decision-making policies which satisfy certain types of asymptotic behavior. In particular, we are interested in specifying constraints on the steady-state behavior of an agent, which captures the proportion of time an agent spends in each state as it interacts for an indefinite period of time with its environment. This is sometimes called the average or expected behavior of the agent. In this paper, we explore the steady-state planning problem of deriving a decision-making policy for an agent such that constraints on its steady-state behavior are satisfied. A linear programming solution for the general case of multichain Markov Decision Processes (MDPs) is proposed and we prove that optimal solutions to the proposed programs yield stationary policies with rigorous guarantees of behavior.
In this paper, critical global connectivity of mobile ad hoc communication networks (MAHCN) is investigated. We model the two-dimensional plane on which nodes move randomly with a triangular lattice. Demanding the best communication of the network, we account the global connectivity $eta$ as a function of occupancy $sigma$ of sites in the lattice by mobile nodes. Critical phenomena of the connectivity for different transmission ranges $r$ are revealed by numerical simulations, and these results fit well to the analysis based on the assumption of homogeneous mixing . Scaling behavior of the connectivity is found as $eta sim f(R^{beta}sigma)$, where $R=(r-r_{0})/r_{0}$, $r_{0}$ is the length unit of the triangular lattice and $beta$ is the scaling index in the universal function $f(x)$. The model serves as a sort of site percolation on dynamic complex networks relative to geometric distance. Moreover, near each critical $sigma_c(r)$ corresponding to certain transmission range $r$, there exists a cut-off degree $k_c$ below which the clustering coefficient of such self-organized networks keeps a constant while the averaged nearest neighbor degree exhibits a unique linear variation with the degree k, which may be useful to the designation of real MAHCN.
The benefit of multi-antenna receivers is investigated in wireless ad hoc networks, and the main finding is that network throughput can be made to scale linearly with the number of receive antennas nR even if each transmitting node uses only a single antenna. This is in contrast to a large body of prior work in single-user, multiuser, and ad hoc wireless networks that have shown linear scaling is achievable when multiple receive and transmit antennas (i.e., MIMO transmission) are employed, but that throughput increases logarithmically or sublinearly with nR when only a single transmit antenna (i.e., SIMO transmission) is used. The linear gain is achieved by using the receive degrees of freedom to simultaneously suppress interference and increase the power of the desired signal, and exploiting the subsequent performance benefit to increase the density of simultaneous transmissions instead of the transmission rate. This result is proven in the transmission capacity framework, which presumes single-hop transmissions in the presence of randomly located interferers, but it is also illustrated that the result holds under several relaxations of the model, including imperfect channel knowledge, multihop transmission, and regular networks (i.e., interferers are deterministically located on grids).
There is substantial variability in the expectations that communication partners bring into interactions, creating the potential for misunderstandings. To directly probe these gaps and our ability to overcome them, we propose a communication task based on color-concept associations. In Experiment 1, we establish several key properties of the mental representations of these expectations, or emph{lexical priors}, based on recent probabilistic theories. Associations are more variable for abstract concepts, variability is represented as uncertainty within each individual, and uncertainty enables accurate predictions about whether others are likely to share the same association. In Experiment 2, we then examine the downstream consequences of these representations for communication. Accuracy is initially low when communicating about concepts with more variable associations, but rapidly increases as participants form ad hoc conventions. Together, our findings suggest that people cope with variability by maintaining well-calibrated uncertainty about their partner and appropriately adaptable representations of their own.
In this paper, we present a method for jointly-learning a microphone selection mechanism and a speech enhancement network for multi-channel speech enhancement with an ad-hoc microphone array. The attention-based microphone selection mechanism is trained to reduce communication-costs through a penalty term which represents a task-performance/ communication-cost trade-off. While working within the trade-off, our method can intelligently stream from more microphones in lower SNR scenes and fewer microphones in higher SNR scenes. We evaluate the model in complex echoic acoustic scenes with moving sources and show that it matches the performance of models that stream from a fixed number of microphones while reducing communication costs.