Observation of hydrogen-induced Dzyaloshinskii-Moriya interaction and reversible switching of magnetic chirality


Abstract in English

The Dzyaloshinskii-Moriya interaction (DMI) has drawn great attention as it stabilizes magnetic chirality, with important implications in fundamental and applied research. This antisymmetric exchange interaction is induced by the broken inversion symmetry at interfaces or in non-centrosymmetric lattices. Significant interfacial DMI was found often at magnetic / heavy-metal interfaces with large spin-orbit coupling. Recent studies have shown promise of induced DMI at interfaces involving light elements such as carbon (graphene) or oxygen. Here we report direct observation of induced DMI by chemisorption of the lightest element, hydrogen, on a ferromagnetic layer at room temperature, which is supported by density functional theory calculations. We further demonstrate a reversible chirality transition of the magnetic domain walls due to the induced DMI via hydrogen chemisorption/desorption. These results shed new light on the understanding of DMI in low atomic number materials and design of novel chiral spintronics and magneto-ionic devices.

Download