Do you want to publish a course? Click here

Information-geometry of physics-informed statistical manifolds and its use in data assimilation

42   0   0.0 ( 0 )
 Added by Francesca Boso
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The data-aware method of distributions (DA-MD) is a low-dimension data assimilation procedure to forecast the behavior of dynamical systems described by differential equations. It combines sequential Bayesian update with the MD, such that the former utilizes available observations while the latter propagates the (joint) probability distribution of the uncertain system state(s). The core of DA-MD is the minimization of a distance between an observation and a prediction in distributional terms, with prior and posterior distributions constrained on a statistical manifold defined by the MD. We leverage the information-geometric properties of the statistical manifold to reduce predictive uncertainty via data assimilation. Specifically, we exploit the information geometric structures induced by two discrepancy metrics, the Kullback-Leibler divergence and the Wasserstein distance, which explicitly yield natural gradient descent. To further accelerate optimization, we build a deep neural network as a surrogate model for the MD that enables automatic differentiation. The manifolds geometry is quantified without sampling, yielding an accurate approximation of the gradient descent direction. Our numerical experiments demonstrate that accounting for the information-geometry of the manifold significantly reduces the computational cost of data assimilation by facilitating the calculation of gradients and by reducing the number of required iterations. Both storage needs and computational cost depend on the dimensionality of a statistical manifold, which is typically small by MD construction. When convergence is achieved, the Kullback-Leibler and $L_2$ Wasserstein metrics have similar performances, with the former being more sensitive to poor choices of the prior.



rate research

Read More

We present a geometrical method for analyzing sequential estimating procedures. It is based on the design principle of the second-order efficient sequential estimation provided in Okamoto, Amari and Takeuchi (1991). By introducing a dual conformal curvature quantity, we clarify the conditions for the covariance minimization of sequential estimators. These conditions are further elabolated for the multidimensional curved exponential family. The theoretical results are then numerically examined by using typical statistical models, von Mises-Fisher and hyperboloid models.
We extend Hoeffdings lemma to general-state-space and not necessarily reversible Markov chains. Let ${X_i}_{i ge 1}$ be a stationary Markov chain with invariant measure $pi$ and absolute spectral gap $1-lambda$, where $lambda$ is defined as the operator norm of the transition kernel acting on mean zero and square-integrable functions with respect to $pi$. Then, for any bounded functions $f_i: x mapsto [a_i,b_i]$, the sum of $f_i(X_i)$ is sub-Gaussian with variance proxy $frac{1+lambda}{1-lambda} cdot sum_i frac{(b_i-a_i)^2}{4}$. This result differs from the classical Hoeffdings lemma by a multiplicative coefficient of $(1+lambda)/(1-lambda)$, and simplifies to the latter when $lambda = 0$. The counterpart of Hoeffdings inequality for Markov chains immediately follows. Our results assume none of countable state space, reversibility and time-homogeneity of Markov chains and cover time-dependent functions with various ranges. We illustrate the utility of these results by applying them to six problems in statistics and machine learning.
We develop a physics-informed machine learning approach for large-scale data assimilation and parameter estimation and apply it for estimating transmissivity and hydraulic head in the two-dimensional steady-state subsurface flow model of the Hanford Site given synthetic measurements of said variables. In our approach, we extend the physics-informed conditional Karhunen-Lo{e}ve expansion (PICKLE) method for modeling subsurface flow with unknown flux (Neumann) and varying head (Dirichlet) boundary conditions. We demonstrate that the PICKLE method is comparable in accuracy with the standard maximum a posteriori (MAP) method, but is significantly faster than MAP for large-scale problems. Both methods use a mesh to discretize the computational domain. In MAP, the parameters and states are discretized on the mesh; therefore, the size of the MAP parameter estimation problem directly depends on the mesh size. In PICKLE, the mesh is used to evaluate the residuals of the governing equation, while the parameters and states are approximated by the truncated conditional Karhunen-Lo{e}ve expansions with the number of parameters controlled by the smoothness of the parameter and state fields, and not by the mesh size. For a considered example, we demonstrate that the computational cost of PICKLE increases near linearly (as $N_{FV}^{1.15}$) with the number of grid points $N_{FV}$, while that of MAP increases much faster as $N_{FV}^{3.28}$. We demonstrated that once trained for one set of Dirichlet boundary conditions (i.e., one river stage), the PICKLE method provides accurate estimates of the hydraulic head for any value of the Dirichlet boundary conditions (i.e., for any river stage).
229 - Song Xi Chen , Liuhua Peng 2018
This paper considers distributed statistical inference for general symmetric statistics %that encompasses the U-statistics and the M-estimators in the context of massive data where the data can be stored at multiple platforms in different locations. In order to facilitate effective computation and to avoid expensive communication among different platforms, we formulate distributed statistics which can be conducted over smaller data blocks. The statistical properties of the distributed statistics are investigated in terms of the mean square error of estimation and asymptotic distributions with respect to the number of data blocks. In addition, we propose two distributed bootstrap algorithms which are computationally effective and are able to capture the underlying distribution of the distributed statistics. Numerical simulation and real data applications of the proposed approaches are provided to demonstrate the empirical performance.
Results by van der Vaart (1991) from semi-parametric statistics about the existence of a non-zero Fisher information are reviewed in an infinite-dimensional non-linear Gaussian regression setting. Information-theoretically optimal inference on aspects of the unknown parameter is possible if and only if the adjoint of the linearisation of the regression map satisfies a certain range condition. It is shown that this range condition may fail in a commonly studied elliptic inverse problem with a divergence form equation, and that a large class of smooth linear functionals of the conductivity parameter cannot be estimated efficiently in this case. In particular, Gaussian `Bernstein von Mises-type approximations for Bayesian posterior distributions do not hold in this setting.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا