High Accuracy Visible Light Positioning Based on Multi-target Tracking Algorithm


Abstract in English

In this paper, we propose a multi-target image tracking algorithm based on continuously apative mean-shift (Cam-shift) and unscented Kalman filter. We improved the single-lamp tracking algorithm proposed in our previous work to multi-target tracking, and achieved better robustness in the case of occlusion, the real-time performance to complete one positioning and relatively high accuracy by dynamically adjusting the weights of the multi-target motion states. Our previous algorithm is limited to the analysis of tracking error. In this paper, the results of the tracking algorithm are evaluated with the tracking error we defined. Then combined with the double-lamp positioning algorithm, the real position of the terminal is calculated and evaluated with the positioning error we defined. Experiments show that the defined tracking error is 0.61cm and the defined positioning error for 3-D positioning is 3.29cm with the average processing time of 91.63ms per frame. Even if nearly half of the LED area is occluded, the tracking error remains at 5.25cm. All of this shows that the proposed visible light positioning (VLP) method can track multiple targets for positioning at the same time with good robustness, real-time performance and accuracy. In addition, the definition and analysis of tracking errors and positioning errors indicates the direction for future efforts to reduce errors.

Download