Do you want to publish a course? Click here

On the Cost of Unsuccessful Searches in Search Trees with Two-way Comparisons

192   0   0.0 ( 0 )
 Added by Neal E. Young
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Search trees are commonly used to implement access operations to a set of stored keys. If this set is static and the probabilities of membership queries are known in advance, then one can precompute an optimal search tree, namely one that minimizes the expected access cost. For a non-key query, a search tree can determine its approximate location by returning the inter-key interval containing the query. This is in contrast to other dictionary data structures, like hash tables, that only report a failed search. We address the question what is the additional cost of determining approximate locations for non-key queries? We prove that for two-way comparison trees this additional cost is at most 1. Our proof is based on a novel probabilistic argument that involves converting a search tree that does not identify non-key queries into a random tree that does.



rate research

Read More

We consider the design of adaptive data structures for searching elements of a tree-structured space. We use a natural generalization of the rotation-based online binary search tree model in which the underlying search space is the set of vertices of a tree. This model is based on a simple structure for decomposing graphs, previously known under several names including elimination trees, vertex rankings, and tubings. The model is equivalent to the classical binary search tree model exactly when the underlying tree is a path. We describe an online $O(log log n)$-competitive search tree data structure in this model, matching the best known competitive ratio of binary search trees. Our method is inspired by Tango trees, an online binary search tree algorithm, but critically needs several new notions including one which we call Steiner-closed search trees, which may be of independent interest. Moreover our technique is based on a novel use of two levels of decomposition, first from search space to a set of Steiner-closed trees, and secondly from these trees into paths.
Given a graph, the sparsest cut problem asks for a subset of vertices whose edge expansion (the normalized cut given by the subset) is minimized. In this paper, we study a generalization of this problem seeking for $ k $ disjoint subsets of vertices (clusters) whose all edge expansions are small and furthermore, the number of vertices remained in the exterior of the subsets (outliers) is also small. We prove that although this problem is $ NP-$hard for trees, it can be solved in polynomial time for all weighted trees, provided that we restrict the search space to subsets which induce connected subgraphs. The proposed algorithm is based on dynamic programming and runs in the worst case in $ O(k^2 n^3) $, when $ n $ is the number of vertices and $ k $ is the number of clusters. It also runs in linear time when the number of clusters and the number of outliers is bounded by a constant.
We study multi-finger binary search trees (BSTs), a far-reaching extension of the classical BST model, with connections to the well-studied $k$-server problem. Finger search is a popular technique for speeding up BST operations when a query sequence has locality of reference. BSTs with multiple fingers can exploit more general regularities in the input. In this paper we consider the cost of serving a sequence of queries in an optimal (offline) BST with $k$ fingers, a powerful benchmark against which other algorithms can be measured. We show that the $k$-finger optimum can be matched by a standard dynamic BST (having a single root-finger) with an $O(log{k})$ factor overhead. This result is tight for all $k$, improving the $O(k)$ factor implicit in earlier work. Furthermore, we describe new online BSTs that match this bound up to a $(log{k})^{O(1)}$ factor. Previously only the one-finger special case was known to hold for an online BST (Iacono, Langerman, 2016; Cole et al., 2000). Splay trees, assuming their conjectured optimality (Sleator and Tarjan, 1983), would have to match our bounds for all $k$. Our online algorithms are randomized and combine techniques developed for the $k$-server problem with a multiplicative-weights scheme for learning tree metrics. To our knowledge, this is the first time when tools developed for the $k$-server problem are used in BSTs. As an application of our $k$-finger results, we show that BSTs can efficiently serve queries that are close to some recently accessed item. This is a (restricted) form of the unified property (Iacono, 2001) that was previously not known to hold for any BST algorithm, online or offline.
90 - David Avis , Luc Devroye 2017
Recently Avis and Jordan have demonstrated the efficiency of a simple technique called budgeting for the parallelization of a number of tree search algorithms. The idea is to limit the amount of work that a processor performs before it terminates its search and returns any unexplored nodes to a master process. This limit is set by a critical budget parameter which determines the overhead of the process. In this paper we study the behaviour of the budget parameter on conditional Galton-Watson trees obtaining asymptotically tight bounds on this overhead. We present empirical results to show that this bound is surprisingly accurate in practice.
61 - Chen Avin 2020
Motivated by recent developments in optical switching and reconfigurable network design, we study dynamic binary search trees (BSTs) in the matching model. In the classical dynamic BST model, the cost of both link traversal and basic reconfiguration (rotation) is $O(1)$. However, in the matching model, the BST is defined by two optical switches (that represent two matchings in an abstract way), and each switch (or matching) reconfiguration cost is $alpha$ while a link traversal cost is still $O(1)$. In this work, we propose Arithmetic BST (A-BST), a simple dynamic BST algorithm that is based on dynamic Shannon-Fano-Elias coding, and show that A-BST is statically optimal for sequences of length $Omega(n alpha log alpha)$ where $n$ is the number of nodes (keys) in the tree.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا