Do you want to publish a course? Click here

Commuting partial normal subgroups and regular localities

110   0   0.0 ( 0 )
 Added by Ellen Henke
 Publication date 2021
  fields
and research's language is English
 Authors Ellen Henke




Ask ChatGPT about the research

In this paper, important concepts from finite group theory are translated to localities, in particular to linking localities. Here localities are group-like structures associated to fusion systems which were introduced by Chermak. Linking localities (by Chermak also called proper localities) are special kinds of localities which correspond to linking systems. Thus they contain the algebraic information that is needed to study $p$-completed classifying spaces of fusion systems as generalizations of $p$-completed classifying spaces of finite groups. Because of the group-like nature of localities, there is a natural notion of partial normal subgroups. Given a locality $mathcal{L}$ and a partial normal subgroup $mathcal{N}$ of $mathcal{L}$, we show that there is a largest partial normal subgroup $mathcal{N}^perp$ of $mathcal{L}$ which, in a certain sense, commutes elementwise with $mathcal{N}$ and thus morally plays the role of a centralizer of $mathcal{N}$ in $mathcal{L}$. This leads to a nice notion of the generalized Fitting subgroup $F^*(mathcal{L})$ of a linking locality $mathcal{L}$. Building on these results we define and study special kinds of linking localities called regular localities. It turns out that there is a theory of components of regular localities akin to the theory of components of finite groups. The main concepts we introduce and work with in the present paper (in particular $mathcal{N}^perp$ in the special case of linking localities, $F^*(mathcal{L})$, regular localities and components of regular localities) were already introduced and studied in a preprint by Chermak. However, we give a different and self-contained approach to the subject where we reprove Chermaks theorems and also show several new results.



rate research

Read More

Motivated in part by representation theoretic questions, we prove that if G is a finite quasi-simple group, then there exists an elementary abelian subgroup of G that intersects every conjugacy class of involutions of G.
This paper is a new contribution to the study of regular subgroups of the affine group $AGL_n(F)$, for any field $F$. In particular we associate to any partition $lambda eq (1^{n+1})$ of $n+1$ abelian regular subgroups in such a way that different partitions define non-conjugate subgroups. Moreover, we classify the regular subgroups of certain natural types for $nleq 4$. Our classification is equivalent to the classification of split local algebras of dimension $n+1$ over $F$. Our methods, based on classical results of linear algebra, are computer free.
82 - Arne Van Antwerpen 2017
In this paper, we show that all Coleman automorphisms of a finite group with self-central minimal non-trivial characteristic subgroup are inner; therefore the normalizer property holds for these groups. Using our methods we show that the holomorph and wreath product of finite simple groups, among others, have no non-inner Coleman automorphisms. As a further application of our theorems, we provide partial answers to questions raised by M. Hertweck and W. Kimmerle. Furthermore, we characterize the Coleman automorphisms of extensions of a finite nilpotent group by a cyclic $p$-group. Lastly, we note that class-preserving automorphisms of 2-power order of some nilpotent-by-nilpotent groups are inner, extending a result by J. Hai and J. Ge.
Given a regular subgroup R of AGL_n(F), one can ask if R contains nontrivial translations. A negative answer to this question was given by Liebeck, Praeger and Saxl for AGL_2(p) (p a prime), AGL_3(p) (p odd) and for AGL_4(2). A positive answer was given by Hegedus for AGL_n(p) when n >= 4 if p is odd and for n=3 or n >= 5 if p=2. A first generalization to finite fields of Hegedus construction was recently obtained by Catino, Colazzo and Stefanelli. In this paper we give examples of such subgroups in AGL_n(F) for any n >= 5 and any field F. For n < 5 we provide necessary and sufficient conditions for their existence, assuming R to be unipotent if char F=0.
We announce various results concerning the structure of compactly generated simple locally compact groups. We introduce a local invariant, called the structure lattice, which consists of commensurability classes of compact subgroups with open normaliser, and show that its properties reflect the global structure of the ambient group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا