Do you want to publish a course? Click here

Nambu Dynamics and Hydrodynamics of Granular Material

59   0   0.0 ( 0 )
 Added by Mayumi Saitou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

On the basis of the intimate relation between Nambu dynamics and the hydrodynamics, the hydrodynamics on a non-commutative space (obtained by the quantization of space), proposed by Nambu in his last work, is formulated as ``hydrodynamics of granular material. In Part 1, the quantization of space is done by Moyal product, and the hydrodynamic simulation is performed for the so obtained two dimensional fluid, which flows inside a canal with an obstacle. The obtained results differ between two cases in which the size of a fluid particle is zero and finite. The difference seems to come from the behavior of vortices generated by an obstacle. In Part 2 of quantization, considering vortex as a string, two models are examined; one is the ``hybrid model in which vortices interact with each other by exchanging Kalb-Ramond fields (a generalization of stream functions), and the other is the more general ``string field theory in which Kalb-Ramond field is one of the excitation mode of string oscillations. In the string field theory, Altarelli-Parisi type evolution equation is introduced. It is expected to describe the response of distribution function of vortex inside a turbulence, when the energy scale is changed. The behaviour of viscosity differs in the string theory, being compared with the particle theory, so that Landau theory of fluid to introduce viscosity may be modified. In conclusion, the hydrodynamics and the string theory are almost identical theories. It should be noted, however, that the string theory to reproduce a given hydrodynamics is not a usual string theory.



rate research

Read More

Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical pre-factor of order unity, this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical pre-factor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.
In this work, we make two improvements on the staggered grid hydrodynamics (SGH) Lagrangian scheme for modeling 2-dimensional compressible multi-material flows on triangular mesh. The first improvement is the construction of a dynamic local remeshing scheme for preventing mesh distortion. The remeshing scheme is similar to many published algorithms except that it introduces some special operations for treating grids around multi-material interfaces. This makes the simulation of extremely deforming and topology-variable multi-material processes possible, such as the complete process of a heavy fluid dipping into a light fluid. The second improvement is the construction of an Euler-like flow on each edge of the mesh to count for the edge-bending effect, so as to mitigate the checkerboard oscillation that commonly exists in Lagrangian simulations, especially the triangular mesh based simulations. Several typical hydrodynamic problems are simulated by the improved staggered grid Lagrangian hydrodynamic method to test its performance.
Using high-speed photography, we investigate two distinct regimes of the impact dynamics of granular jets with non-circular cross-sections. In the steady-state regime, we observe the formation of thin granular sheets with anisotropic shapes and show that the degree of anisotropy increases with the aspect ratio of the jets cross-section. Our results illustrate the liquid-like behavior of granular materials during impact and demonstrate that a collective hydrodynamic flow emerges from strongly interacting discrete particles. We discuss the analogy between our experiments and those from the Relativistic Heavy Ion Collider (RHIC), where similar anisotropic ejecta from a quark-gluon plasma have been observed in heavy-ion impact.
Colloidal particles with strong, short-ranged attractions can form a gel. We simulate this process without and with hydrodynamic interactions (HI), using the lattice-Boltzmann method to account for presence of a thermalized solvent. We show that HI speed up and slow down gelation at low and high volume fractions, respectively. The transition between these two regimes is linked to the existence of a percolating cluster shortly after quenching the system. However, when we compare gels at matched structural age, we find nearly indistinguishable structures with and without HI. Our result explains longstanding, unresolved conflicts in the literature.
A gas composed of a large number of atoms evolving according to Newtonian dynamics is often described by continuum hydrodynamics. Proving this rigorously is an outstanding open problem, and precise numerical demonstrations of the equivalence of the hydrodynamic and microscopic descriptions are rare. We test this equivalence in the context of the evolution of a blast wave, a problem that is expected to be at the limit where hydrodynamics could work. We study a one-dimensional gas at rest with instantaneous localized release of energy for which the hydrodynamic Euler equations admit a self-similar scaling solution. Our microscopic model consists of hard point particles with alternating masses, which is a nonintegrable system with strong mixing dynamics. Our extensive microscopic simulations find a remarkable agreement with Euler hydrodynamics, with deviations in a small core region that are understood as arising due to heat conduction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا