No Arabic abstract
The problem of estimating the probability distribution of labels has been widely studied as a label distribution learning (LDL) problem, whose applications include age estimation, emotion analysis, and semantic segmentation. We propose a tree-Wasserstein distance regularized LDL algorithm, focusing on hierarchical text classification tasks. We propose predicting the entire label hierarchy using neural networks, where the similarity between predicted and true labels is measured using the tree-Wasserstein distance. Through experiments using synthetic and real-world datasets, we demonstrate that the proposed method successfully considers the structure of labels during training, and it compares favorably with the Sinkhorn algorithm in terms of computation time and memory usage.
Learning to predict multi-label outputs is challenging, but in many problems there is a natural metric on the outputs that can be used to improve predictions. In this paper we develop a loss function for multi-label learning, based on the Wasserstein distance. The Wasserstein distance provides a natural notion of dissimilarity for probability measures. Although optimizing with respect to the exact Wasserstein distance is costly, recent work has described a regularized approximation that is efficiently computed. We describe an efficient learning algorithm based on this regularization, as well as a novel extension of the Wasserstein distance from probability measures to unnormalized measures. We also describe a statistical learning bound for the loss. The Wasserstein loss can encourage smoothness of the predictions with respect to a chosen metric on the output space. We demonstrate this property on a real-data tag prediction problem, using the Yahoo Flickr Creative Commons dataset, outperforming a baseline that doesnt use the metric.
Robust loss functions are essential for training deep neural networks with better generalization power in the presence of noisy labels. Symmetric loss functions are confirmed to be robust to label noise. However, the symmetric condition is overly restrictive. In this work, we propose a new class of loss functions, namely textit{asymmetric loss functions}, which are robust to learning with noisy labels for various types of noise. We investigate general theoretical properties of asymmetric loss functions, including classification calibration, excess risk bound, and noise tolerance. Meanwhile, we introduce the asymmetry ratio to measure the asymmetry of a loss function. The empirical results show that a higher ratio would provide better noise tolerance. Moreover, we modify several commonly-used loss functions and establish the necessary and sufficient conditions for them to be asymmetric. Experimental results on benchmark datasets demonstrate that asymmetric loss functions can outperform state-of-the-art methods. The code is available at href{https://github.com/hitcszx/ALFs}{https://github.com/hitcszx/ALFs}
We propose a novel and principled method to learn a nonparametric graph model called graphon, which is defined in an infinite-dimensional space and represents arbitrary-size graphs. Based on the weak regularity lemma from the theory of graphons, we leverage a step function to approximate a graphon. We show that the cut distance of graphons can be relaxed to the Gromov-Wasserstein distance of their step functions. Accordingly, given a set of graphs generated by an underlying graphon, we learn the corresponding step function as the Gromov-Wasserstein barycenter of the given graphs. Furthermore, we develop several enhancements and extensions of the basic algorithm, $e.g.$, the smoothed Gromov-Wasserstein barycenter for guaranteeing the continuity of the learned graphons and the mixed Gromov-Wasserstein barycenters for learning multiple structured graphons. The proposed approach overcomes drawbacks of prior state-of-the-art methods, and outperforms them on both synthetic and real-world data. The code is available at https://github.com/HongtengXu/SGWB-Graphon.
Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust loss functions, however, inevitably involve hyperparameter(s) to be tuned, manually or heuristically through cross validation, which makes them fairly hard to be generally applied in practice. Besides, the non-convexity brought by the loss as well as the complicated network architecture makes it easily trapped into an unexpected solution with poor generalization capability. To address above issues, we propose a meta-learning method capable of adaptively learning hyperparameter in robust loss functions. Specifically, through mutual amelioration between robust loss hyperparameter and network parameters in our method, both of them can be simultaneously finely learned and coordinated to attain solutions with good generalization capability. Four kinds of SOTA robust loss functions are attempted to be integrated into our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its accuracy and generalization performance, as compared with conventional hyperparameter tuning strategy, even with carefully tuned hyperparameters.
The challenge of assigning importance to individual neurons in a network is of interest when interpreting deep learning models. In recent work, Dhamdhere et al. proposed Total Conductance, a natural refinement of Integrated Gradients for attributing importance to internal neurons. Unfortunately, the authors found that calculating conductance in tensorflow required the addition of several custom gradient operators and did not scale well. In this work, we show that the formula for Total Conductance is mathematically equivalent to Path Integrated Gradients computed on a hidden layer in the network. We provide a scalable implementation of Total Conductance using standard tensorflow gradient operators that we call Neuron Integrated Gradients. We compare Neuron Integrated Gradients to DeepLIFT, a pre-existing computationally efficient approach that is applicable to calculating internal neuron importance. We find that DeepLIFT produces strong empirical results and is faster to compute, but because it lacks the theoretical properties of Neuron Integrated Gradients, it may not always be preferred in practice. Colab notebook reproducing results: http://bit.ly/neuronintegratedgradients