Do you want to publish a course? Click here

Satellite data for the offshore renewable energy sector: synergies and innovation opportunities

62   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Can satellite data be used to address challenges currently faced by the Offshore Renewable Energy (ORE) sector? What benefit can satellite observations bring to resource assessment and maintenance of ORE farms? Can satellite observations be used to assess the environmental impact of offshore renewables leading towards a more sustainable ORE sector? This review paper faces these questions presenting a holistic view of the current interactions between satellite and ORE sectors, and future needs to make this partnerships grow. The aim of the work is to start the conversation between these sectors by establishing a common ground. We present offshore needs and satellite technology limitations, as well as potential opportunities and areas of growth. To better understand this, the reader is guided through the history, current developments, challenges and future of offshore wind, tidal and wave energy technologies. Then, an overview on satellite observations for ocean applications is given, covering types of instruments and how they are used to provide different metocean variables, satellite performance, and data processing and integration. Past, present and future satellite missions are also discussed. Finally, the paper focuses on innovation opportunities and the potential of synergies between the ORE and satellite sectors. Specifically, we pay attention to improvements that satellite observations could bring to standard measurement techniques: assessing uncertainty, wind, tidal and wave conditions forecast, as well as environmental monitoring from space. Satellite-enabled measurement of ocean physical processes and applications for fisheries, mammals and birds, and habitat change, are also discussed in depth.



rate research

Read More

Detectors of fast flashes (duration of 1-128 ms) in near ultraviolet (240-400 nm) and red-infrared (>610 nm) ranges on board the Universitetsky-Tatiana-2 satellite have measured transient luminous events global distribution. Events with number of photons 10^20-5{cdot}10^21 radiated in the atmosphere are uniformly distributed over latitudes and longitudes. Events with number of photons more than 5{cdot}10^21 are concentrated near the equator above continents. Measured ratio of photons number radiated in red-IR range to photons number radiated in UV related to excitation of nitrogen molecular indicates a high altitude (>50 km) of the atmospheric electric discharges responsible for the observed transients. Series of every minute transients (from 3 to 16 transients in the series) were observed. The detection of transients out of thunderstorm area, in cloudless region- sometimes thousands km away of thunderstorms is remarkable. The obtained data allow us to assume that transient events are not only consequences of lightning in event-by-event way but they are the result of long distance influence of thunderstorm electric activity causing breakdowns in the upper atmosphere (at altitudes >50 km).
We present a new high-resolution global renewable energy atlas ({REatlas}) that can be used to calculate customised hourly time series of wind and solar PV power generation. In this paper, the atlas is applied to produce 32-year-long hourly model wind power time series for Denmark for each historical and future year between 1980 and 2035. These are calibrated and validated against real production data from the period 2000 to 2010. The high number of years allows us to discuss how the characteristics of Danish wind power generation varies between individual weather years. As an example, the annual energy production is found to vary by $pm10%$ from the average. Furthermore, we show how the production pattern change as small onshore turbines are gradually replaced by large onshore and offshore turbines. Finally, we compare our wind power time series for 2020 to corresponding data from a handful of Danish energy system models. The aim is to illustrate how current differences in model wind may result in significant differences in technical and economical model predictions. These include up to $15%$ differences in installed capacity and $40%$ differences in system reserve requirements.
Due to the fractal nature of the domain geometry in geophysical flow simulations, a completely accurate description of the domain in terms of a computational mesh is frequently deemed infeasible. Shoreline and bathymetry simplification methods are used to remove small scale details in the geometry, particularly in areas away from the region of interest. To that end, a novel method for shoreline and bathymetry simplification is presented. Existing shoreline simplification methods typically remove points if the resultant geometry satisfies particular geometric criteria. Bathymetry is usually simplified using traditional filtering techniques, that remove unwanted Fourier modes. Principal Component Analysis (PCA) has been used in other fields to isolate small-scale structures from larger scale coherent features in a robust way, underpinned by a rigorous but simple mathematical framework. Here we present a method based on principal component analysis aimed towards simplification of shorelines and bathymetry. We present the algorithm in detail and show simplified shorelines and bathymetry in the wider region around the North Sea. Finally, the methods are used in the context of unstructured mesh generation aimed at tidal resource assessment simulations in the coastal regions around the UK.
The aim of this document is to define a Pyroclastic Density Currents (PDCs) benchmark based on a large-scale experiment to be used with numerical models at different levels of complexity. The document is organized as follows. Section 2 concisely describes the large-scale laboratory experiment setup and geometry, and the relevant specific bibliography. Section 3 introduces the theoretical framework to adapt the experimental dataset to numerical models at different levels of complexity. Section 4 details the initial and boundary conditions. In particular, Section 4.1 describes the inlet velocity that best reproduces the experimental boundary conditions. Section 4.3 describes in detail the inlet concentration and temperature profiles, respectively. Section 4.4 describes the input grain size distribution. Section 5 gives the guidelines for consistently presenting the numerical outputs in a model inter-comparison study. Section 6 is a summary to guide the reader through the data sets.
Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. (...) At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the coastline.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا