Do you want to publish a course? Click here

Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets

171   0   0.0 ( 0 )
 Added by Guang Yu Sun
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experiments [J. Guo et al., Phys. Rev. Lett.124,206602 (2020)] on thermodynamic properties of the frustrated layered quantum magnet SrCu$_2$(BO$_3$)$_2$ -- the Shastry-Sutherland material -- have provided strong evidence for a low-temperature phase transition between plaquette-singlet and antiferromagnetic order as a function of pressure. Further motivated by the recently discovered unusual first-order quantum phase transition with an apparent emergent O(4) symmetry of the antiferromagnetic and plaquette-singlet order parameters in a two-dimensional checkerboard J-Q quantum spin model [B. Zhao et al., Nat. Phys. 15, 678 (2019)], we here study the same model in the presence of weak inter-layer couplings. Our focus is on the evolution of the emergent symmetry as the system crosses over from two to three dimensions and the phase transition extends from strictly zero temperature in two dimensions up to finite temperature as expected in SrCu$_2$(BO$_3$)$_2$. Using quantum Monte Carlo simulations, we map out the phase boundaries of the plaquette-singlet and antiferromagnetic phases, with particular focus on the triple point where these two order phases meet the paramagnetic phase for given strength of the inter-layer coupling. All transitions are first-order in the neighborhood of the triple points. We show that the emergent O(4) symmetry of the coexistence state breaks down clearly when the interlayer coupling becomes sufficiently large, but for a weak coupling, of the magnitude expected experimentally, the enlarged symmetry can still be observed at the triple point up to significant length scales. Thus, it is likely that the plaquette-singlet to antiferromagnetic transition in SrCu$_2$(BO$_3$)$_2$ exhibits remnants of emergent O(4) symmetry, which should be observable due to additional weakly gapped Goldstone modes.



rate research

Read More

367 - Lu Liu , Hui Shao , Yu-Cheng Lin 2018
We study effects of disorder (randomness) in a 2D square-lattice $S=1/2$ quantum spin system, the $J$-$Q$ model with a 6-spin interaction $Q$ supplementing the Heisenberg exchange $J$. In the absence of disorder the system hosts antiferromagnetic (AFM) and columnar valence-bond-solid (VBS) ground states. The VBS breaks $Z_4$ symmetry, and in the presence of arbitrarily weak disorder it forms domains. Using QMC simulations, we demonstrate two kinds of such disordered VBS states. Upon dilution, a removed site leaves a localized spin in the opposite sublattice. These spins form AFM order. For random interactions, we find a different state, with no order but algebraically decaying mean correlations. We identify localized spinons at the nexus of domain walls between different VBS patterns. These spinons form correlated groups with the same number of spinons and antispinons. Within such a group, there is a strong tendency to singlet formation, because of spinon-spinon interactions mediated by the domain walls. Thus, no long-range AFM order forms. We propose that this state is a 2D analog of the well-known 1D random singlet (RS) state, though the dynamic exponent $z$ in 2D is finite. By studying the T-dependent magnetic susceptibility, we find that $z$ varies, from $z=2$ at the AFM--RS phase boundary and larger in the RS phase The RS state discovered here in a system without geometric frustration should correspond to the same fixed point as the RS state recently proposed for frustrated systems, and the ability to study it without Monte Carlo sign problems opens up opportunities for further detailed characterization of its static and dynamic properties. We also discuss experimental evidence of the RS phase in the quasi-two-dimensional square-lattice random-exchange quantum magnets Sr$_2$CuTe$_{1-x}$W$_x$O$_6$.
164 - Bowen Zhao , Phillip Weinberg , 2018
Theoretical studies of quantum phase transitions have suggested critical points with higher symmetries than those of the underlying Hamiltonian. Here we demonstrate a surprising emergent symmetry of the coexistence state at a strongly discontinuous phase transition between two ordered ground states. We present a quantum Monte Carlo study of a two-dimensional $S=1/2$ quantum magnet hosting the antiferromagnetic (AFM) and plaquette-singlet solid (PSS) states recently detected in SrCu$_2$(BO$_3$)$_2$. We observe that the O(3) symmetric AFM order and the Z$_2$ symmetric PSS order form an O(4) vector at the transition. The control parameter $g$ (a coupling ratio) rotates the vector between the AFM and PSS sectors and there are no energy barriers between the two at the transition point $g_c$. This phenomenon may be observable in SrCu$_2$(BO$_3$)$_2$.
Measurements of magnetic susceptibility, heat capacity and thermal expansion are reported for single crystalline CuSb$_{2}$O$_{6}$ in the temperature range $5<T<350$ K. The magnetic susceptibility exhibits a broad peak centered near 60 K that is typical of one-dimensional antiferromagnetic compounds. Long-range antiferromagnetic order at $T_N$ = 8.7 K is accompanied by an energy gap ($Delta$ = 17.48(6) K). This transition represents a crossover from one- to three-dimensional antiferromagnetic behavior. Both heat capacity and the thermal expansion coefficients exhibit distinct jumps at $T_N$, which are similar to those observed at the normal-superconducting phase transition in a superconductor. This behavior is quite unusual, and is presumably associated with a Spin-Peierls transition occurring as a result of three-dimensional phonons coupling with {it Jordan-Wigner-transformed} Fermions.
In order to understand the properties of Mott insulators with strong ground state orbital fluctuations, we study the zero temperature properties of the SU(4) spin-orbital model on a square lattice. Exact diagonalizations of finite clusters suggest that the ground state is disordered with a singlet-multiplet gap and possibly low-lying SU(4) singlets in the gap. An interpretation in terms of plaquette SU(4) singlets is proposed. The implications for LiNiO_2 are discussed.
We investigate the double layered Sr$_{3}$(Ru$_{1-x}$Mn$_{x}$)$_{2}$O$_{7}$ and its doping-induced quantum phase transition (QPT) from a metal to an antiferromagnetic (AFM) Mott insulator. Using spectroscopic imaging with the scanning tunneling microscope (STM), we visualize the evolution of the electronic states in real- and momentum-space. We find a partial-gap in the tunneling density of states at the Fermi energy (E$_{F}$) that develops with doping to form a weak Mott insulating ({Delta} ~ 100meV) state. Near the QPT, we discover a spatial electronic reorganization into a commensurate checkerboard charge order. These findings share some resemblance to the well-established universal charge order in the pseudogap phase of cuprates. Our experiments therefore demonstrate the ubiquity of the incipient charge order that emanates from doped Mott insulators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا