Do you want to publish a course? Click here

DeepSets and their derivative networks for solving symmetric PDEs

150   0   0.0 ( 0 )
 Added by Huyen Pham
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Machine learning methods for solving nonlinear partial differential equations (PDEs) are hot topical issues, and different algorithms proposed in the literature show efficient numerical approximation in high dimension. In this paper, we introduce a class of PDEs that are invariant to permutations, and called symmetric PDEs. Such problems are widespread, ranging from cosmology to quantum mechanics, and option pricing/hedging in multi-asset market with exchangeable payoff. Our main application comes actually from the particles approximation of mean-field control problems. We design deep learning algorithms based on certain types of neural networks, named PointNet and DeepSet (and their associated derivative networks), for computing simultaneously an approximation of the solution and its gradient to symmetric PDEs. We illustrate the performance and accuracy of the PointNet/DeepSet networks compared to classical feedforward ones, and provide several numerical results of our algorithm for the examples of a mean-field systemic risk, mean-variance problem and a min/max linear quadratic McKean-Vlasov control problem.



rate research

Read More

We prove a rate of convergence for the $N$-particle approximation of a second-order partial differential equation in the space of probability measures, like the Master equation or Bellman equation of mean-field control problem under common noise. The rate is of order $1/N$ for the pathwise error on the solution $v$ and of order $1/sqrt{N}$ for the $L^2$-error on its $L$-derivative $partial_mu v$. The proof relies on backward stochastic differential equations techniques.
We consider derivatives written on multiple underlyings in a one-period financial market, and we are interested in the computation of model-free upper and lower bounds for their arbitrage-free prices. We work in a completely realistic setting, in that we only assume the knowledge of traded prices for other single- and multi-asset derivatives, and even allow for the presence of bid-ask spread in these prices. We provide a fundamental theorem of asset pricing for this market model, as well as a superhedging duality result, that allows to transform the abstract maximization problem over probability measures into a more tractable minimization problem over vectors, subject to certain constraints. Then, we recast this problem into a linear semi-infinite optimization problem, and provide two algorithms for its solution. These algorithms provide upper and lower bounds for the prices that are $varepsilon$-optimal, as well as a characterization of the optimal pricing measures. These algorithms are efficient and allow the computation of bounds in high-dimensional scenarios (e.g. when $d=60$). Moreover, these algorithms can be used to detect arbitrage opportunities and identify the corresponding arbitrage strategies. Numerical experiments using both synthetic and real market data showcase the efficiency of these algorithms, while they also allow to understand the reduction of model risk by including additional information, in the form of known derivative prices.
119 - Eduardo Abi Jaber 2020
This paper concerns portfolio selection with multiple assets under rough covariance matrix. We investigate the continuous-time Markowitz mean-variance problem for a multivariate class of affine and quadratic Volterra models. In this incomplete non-Markovian and non-semimartingale market framework with unbounded random coefficients, the optimal portfolio strategy is expressed by means of a Riccati backward stochastic differential equation (BSDE). In the case of affine Volterra models, we derive explicit solutions to this BSDE in terms of multi-dimensional Riccati-Volterra equations. This framework includes multivariate rough Heston models and extends the results of cite{han2019mean}. In the quadratic case, we obtain new analytic formulae for the the Riccati BSDE and we establish their link with infinite dimensional Riccati equations. This covers rough Stein-Stein and Wishart type covariance models. Numerical results on a two dimensional rough Stein-Stein model illustrate the impact of rough volatilities and stochastic correlations on the optimal Markowitz strategy. In particular for positively correlated assets, we find that the optimal strategy in our model is a `buy rough sell smooth one.
126 - Jessica Martin 2021
What type of delegation contract should be offered when facing a risk of the magnitude of the pandemic we are currently experiencing and how does the likelihood of an exogenous early termination of the relationship modify the terms of a full-commitment contract? We study these questions by considering a dynamic principal-agent model that naturally extends the classical Holmstr{o}m-Milgrom setting to include a risk of default whose origin is independent of the inherent agency problem. We obtain an explicit characterization of the optimal wage along with the optimal action provided by the agent. The optimal contract is linear by offering both a fixed share of the output which is similar to the standard shutdown-free Holmstr{o}m-Milgrom model and a linear prevention mechanism that is proportional to the random lifetime of the contract. We then tweak the model to add a possibility for risk mitigation through investment and study its optimality.
71 - Ying Hu 2018
The optimal stochastic control problem with a quadratic cost functional for linear partial differential equations (PDEs) driven by a state-and control-dependent white noise is formulated and studied. Both finite-and infinite-time horizons are considered. The multi-plicative white noise dynamics of the system give rise to a new phenomenon of singularity to the associated Riccati equation and even to the Lyapunov equation. Well-posedness of both Riccati equation and Lyapunov equation are obtained for the first time. The linear feedback coefficient of the optimal control turns out to be singular and expressed in terms of the solution of the associated Riccati equation. The null controllability is shown to be equivalent to the existence of the solution to Riccati equation with the singular terminal value. Finally, the controlled Anderson model is addressed as an illustrating example.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا