Topology effects have being extensively studied and confirmed in strongly correlated condensed matter physics. In the large color number limit of QCD, baryons can be regarded as topological objects -- skyrmions -- and the baryonic matter can be regarded as a skyrmion matter. We review in this paper the generalized effective field theory for dense compact-star matter constructed with the robust inputs obtained from the skyrmion approach to dense nuclear matter, relying to possible ``emergent scale and local flavor symmetries at high density. All nuclear matter properties from the saturation density $n_0$ up to several times $n_0$ can be fairly well described. A uniquely novel -- and unorthdox -- feature of this theory is the precocious appearance of the pseudo-conformal sound velocity $v^2_{s}/c^2 approx 1/3$, with the non-vanishing trace of the energy momentum tensor of the system. The topology change encoded in the density scaling of low energy constants is interpreted as the quark-hadron continuity in the sense of Cheshire Cat Principle (CCP) at density $gsim 2n_0$ in accessing massive compact stars. We confront the approach with the data from GW170817 and GW190425.