Primitive tuning for non-hyperbolic polynomials


Abstract in English

Let $f_0$ be a polynomial of degree $d_1+d_2$ with a periodic critical point $0$ of multiplicity $d_1-1$ and a Julia critical point of multiplicity $d_2$. We show that if $f_0$ is primitive, free of neutral periodic points and non-renormalizable at the Julia critical point, then the straightening map $chi_{f_0}:mathcal C(lambda_{f_0}) to mathcal C_{d_1}$ is a bijection. More precisely, $f^{m_0}$ has a polynomial-like restriction which is hybrid equivalent to some polynomial in $mathcal C_{d_1}$ for each map $f in mathcal C(lambda_{f_0})$, where $m_0$ is the period of $0$ under $f_0$. On the other hand, $f_0$ can be tuned with any polynomial $gin mathcal C_{d_1}$. As a consequence, we conclude that the straightening map $chi_{f_0}$ is a homeomorphism from $mathcal C(lambda_{f_0})$ onto the Mandelbrot set when $d_1=2$. This together with the main result in [SW] solve the problem for primitive tuning for cubic polynomials with connected Julia sets thoroughly.

Download