Do you want to publish a course? Click here

Dirac systems with magnetic field and position dependent mass: Darboux transformations and equivalence with generalized Dirac oscillators

107   0   0.0 ( 0 )
 Added by Pinaki Roy
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a Darboux transformation for a class of two-dimensional Dirac systems at zero energy. Our starting equation features a position-dependent mass, a matrix potential, and an additional degree of freedom that can be interpreted either as a magnetic field perpendicular to the plane or a generalized Dirac oscillator interaction. We obtain a number of Darbouxtransformed Dirac equations for which the zero energy solutions are exactly known.



rate research

Read More

124 - C.-L. Ho , P. Roy 2018
We study the $(1+1)$ dimensional generalized Dirac oscillator with a position-dependent mass. In particular, bound states with zero energy as well as non zero energy have been obtained for suitable choices of the mass function/oscillator interaction. It has also been shown that in the presence of an electric field, bound states exist if the magnitude of the electric field does not exceed a critical value.
Formulas relating Poincare-Steklov operators for Schroedinger equations related by Darboux-Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.
134 - D. A. Kulikov 2011
The following comparison rules for the discrete spectrum of the position-dependent mass (PDM) Schroedinger equation are established. (i) If a constant mass $m_0$ and a PDM $m(x)$ are ordered everywhere, that is either $m_0leq m(x)$ or $m_0geq m(x)$, then the corresponding eigenvalues of the constant-mass Hamiltonian and of the PDM Hamiltonian with the same potential and the BenDaniel-Duke ambiguity parameters are ordered. (ii) The corresponding eigenvalues of PDM Hamiltonians with the different sets of ambiguity parameters are ordered if $ abla^2 (1/m(x))$ has a definite sign. We prove these statements by using the Hellmann-Feynman theorem and offer examples of their application.
A translation operator is introduced to describe the quantum dynamics of a position-dependent mass particle in a null or constant potential. From this operator, we obtain a generalized form of the momentum operator as well as a unique commutation relation for $hat x$ and $hat p_gamma$. Such a formalism naturally leads to a Schrodinger-like equation that is reminiscent of wave equations typically used to model electrons with position-dependent (effective) masses propagating through abrupt interfaces in semiconductor heterostructures. The distinctive features of our approach is demonstrated through analytical solutions calculated for particles under null and constant potentials like infinite wells in one and two dimensions and potential barriers.
187 - J.R. Morris 2015
An inhomogeneous Kaluza-Klein compactification to four dimensions, followed by a conformal transformation, results in a system with position dependent mass (PDM). This origin of a PDM is quite different from the condensed matter one. A substantial generalization of a previously studied nonlinear oscillator with variable mass is obtained, wherein the position dependence of the mass of a nonrelativistic particle is due to a dilatonic coupling function emerging from the extra dimension. Previously obtained solutions for such systems can be extended and reinterpreted as nonrelativistic particles interacting with dilaton fields, which, themselves, can have interesting structures. An application is presented for the nonlinear oscillator, where within the new scenario the particle is coupled to a dilatonic string.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا