Do you want to publish a course? Click here

FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout

57   0   0.0 ( 0 )
 Added by Stefanos Laskaridis
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Federated Learning (FL) has been gaining significant traction across different ML tasks, ranging from vision to keyboard predictions. In large-scale deployments, client heterogeneity is a fact, and constitutes a primary problem for fairness, training performance and accuracy. Although significant efforts have been made into tackling statistical data heterogeneity, the diversity in the processing capabilities and network bandwidth of clients, termed as system heterogeneity, has remained largely unexplored. Current solutions either disregard a large portion of available devices or set a uniform limit on the models capacity, restricted by the least capable participants. In this work, we introduce Ordered Dropout, a mechanism that achieves an ordered, nested representation of knowledge in Neural Networks and enables the extraction of lower footprint submodels without the need of retraining. We further show that for linear maps our Ordered Dropout is equivalent to SVD. We employ this technique, along with a self-distillation methodology, in the realm of FL in a framework called FjORD. FjORD alleviates the problem of client system heterogeneity by tailoring the model width to the clients capabilities. Extensive evaluation on both CNNs and RNNs across diverse modalities shows that FjORD consistently leads to significant performance gains over state-of-the-art baselines, while maintaining its nested structure.

rate research

Read More

111 - Yue Tan , Guodong Long , Lu Liu 2021
The heterogeneity across devices usually hinders the optimization convergence and generalization performance of federated learning (FL) when the aggregation of devices knowledge occurs in the gradient space. For example, devices may differ in terms of data distribution, network latency, input/output space, and/or model architecture, which can easily lead to the misalignment of their local gradients. To improve the tolerance to heterogeneity, we propose a novel federated prototype learning (FedProto) framework in which the devices and server communicate the class prototypes instead of the gradients. FedProto aggregates the local prototypes collected from different devices, and then sends the global prototypes back to all devices to regularize the training of local models. The training on each device aims to minimize the classification error on the local data while keeping the resulting local prototypes sufficiently close to the corresponding global ones. Through experiments, we propose a benchmark setting tailored for heterogeneous FL, with FedProto outperforming several recent FL approaches on multiple datasets.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model, without the need to share their local data. It is a promising solution for telemonitoring systems that demand intensive data collection, for detection, classification, and prediction of future events, from different locations while maintaining a strict privacy constraint. Due to privacy concerns and critical communication bottlenecks, it can become impractical to send the FL updated models to a centralized server. Thus, this paper studies the potential of hierarchical FL in IoT heterogeneous systems and propose an optimized solution for user assignment and resource allocation on multiple edge nodes. In particular, this work focuses on a generic class of machine learning models that are trained using gradient-descent-based schemes while considering the practical constraints of non-uniformly distributed data across different users. We evaluate the proposed system using two real-world datasets, and we show that it outperforms state-of-the-art FL solutions. In particular, our numerical results highlight the effectiveness of our approach and its ability to provide 4-6% increase in the classification accuracy, with respect to hierarchical FL schemes that consider distance-based user assignment. Furthermore, the proposed approach could significantly accelerate FL training and reduce communication overhead by providing 75-85% reduction in the communication rounds between edge nodes and the centralized server, for the same model accuracy.
Federated learning (FL) has gain growing interests for its capability of learning from distributed data sources collectively without the need of accessing the raw data samples across different sources. So far FL research has mostly focused on improving the performance, how the algorithmic disparity will be impacted for the model learned from FL and the impact of algorithmic disparity on the utility inconsistency are largely unexplored. In this paper, we propose an FL framework to jointly consider performance consistency and algorithmic fairness across different local clients (data sources). We derive our framework from a constrained multi-objective optimization perspective, in which we learn a model satisfying fairness constraints on all clients with consistent performance. Specifically, we treat the algorithm prediction loss at each local client as an objective and maximize the worst-performing client with fairness constraints through optimizing a surrogate maximum function with all objectives involved. A gradient-based procedure is employed to achieve the Pareto optimality of this optimization problem. Theoretical analysis is provided to prove that our method can converge to a Pareto solution that achieves the min-max performance with fairness constraints on all clients. Comprehensive experiments on synthetic and real-world datasets demonstrate the superiority that our approach over baselines and its effectiveness in achieving both fairness and consistency across all local clients.
Federated learning learns from scattered data by fusing collaborative models from local nodes. However, due to chaotic information distribution, the model fusion may suffer from structural misalignment with regard to unmatched parameters. In this work, we propose a novel federated learning framework to resolve this issue by establishing a firm structure-information alignment across collaborative models. Specifically, we design a feature-oriented regulation method ({$Psi$-Net}) to ensure explicit feature information allocation in different neural network structures. Applying this regulating method to collaborative models, matchable structures with similar feature information can be initialized at the very early training stage. During the federated learning process under either IID or non-IID scenarios, dedicated collaboration schemes further guarantee ordered information distribution with definite structure matching, so as the comprehensive model alignment. Eventually, this framework effectively enhances the federated learning applicability to extensive heterogeneous settings, while providing excellent convergence speed, accuracy, and computation/communication efficiency.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا