Do you want to publish a course? Click here

Zero-Shot Learning Based on Knowledge Sharing

83   0   0.0 ( 0 )
 Added by Hongxin Xiang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Zero-Shot Learning (ZSL) is an emerging research that aims to solve the classification problems with very few training data. The present works on ZSL mainly focus on the mapping of learning semantic space to visual space. It encounters many challenges that obstruct the progress of ZSL research. First, the representation of the semantic feature is inadequate to represent all features of the categories. Second, the domain drift problem still exists during the transfer from semantic space to visual space. In this paper, we introduce knowledge sharing (KS) to enrich the representation of semantic features. Based on KS, we apply a generative adversarial network to generate pseudo visual features from semantic features that are very close to the real visual features. Abundant experimental results from two benchmark datasets of ZSL show that the proposed approach has a consistent improvement.



rate research

Read More

Although zero-shot learning (ZSL) has an inferential capability of recognizing new classes that have never been seen before, it always faces two fundamental challenges of the cross modality and crossdomain challenges. In order to alleviate these problems, we develop a generative network-based ZSL approach equipped with the proposed Cross Knowledge Learning (CKL) scheme and Taxonomy Regularization (TR). In our approach, the semantic features are taken as inputs, and the output is the synthesized visual features generated from the corresponding semantic features. CKL enables more relevant semantic features to be trained for semantic-to-visual feature embedding in ZSL, while Taxonomy Regularization (TR) significantly improves the intersections with unseen images with more generalized visual features generated from generative network. Extensive experiments on several benchmark datasets (i.e., AwA1, AwA2, CUB, NAB and aPY) show that our approach is superior to these state-of-the-art methods in terms of ZSL image classification and retrieval.
Suffering from the semantic insufficiency and domain-shift problems, most of existing state-of-the-art methods fail to achieve satisfactory results for Zero-Shot Learning (ZSL). In order to alleviate these problems, we propose a novel generative ZSL method to learn more generalized features from multi-knowledge with continuously generated new semantics in semantic-to-visual embedding. In our approach, the proposed Multi-Knowledge Fusion Network (MKFNet) takes different semantic features from multi-knowledge as input, which enables more relevant semantic features to be trained for semantic-to-visual embedding, and finally generates more generalized visual features by adaptively fusing visual features from different knowledge domain. The proposed New Feature Generator (NFG) with adaptive genetic strategy is used to enrich semantic information on the one hand, and on the other hand it greatly improves the intersection of visual feature generated by MKFNet and unseen visual faetures. Empirically, we show that our approach can achieve significantly better performance compared to existing state-of-the-art methods on a large number of benchmarks for several ZSL tasks, including traditional ZSL, generalized ZSL and zero-shot retrieval.
New categories can be discovered by transforming semantic features into synthesized visual features without corresponding training samples in zero-shot image classification. Although significant progress has been made in generating high-quality synthesized visual features using generative adversarial networks, guaranteeing semantic consistency between the semantic features and visual features remains very challenging. In this paper, we propose a novel zero-shot learning approach, GAN-CST, based on class knowledge to visual feature learning to tackle the problem. The approach consists of three parts, class knowledge overlay, semi-supervised learning and triplet loss. It applies class knowledge overlay (CKO) to obtain knowledge not only from the corresponding class but also from other classes that have the knowledge overlay. It ensures that the knowledge-to-visual learning process has adequate information to generate synthesized visual features. The approach also applies a semi-supervised learning process to re-train knowledge-to-visual model. It contributes to reinforcing synthesized visual features generation as well as new category prediction. We tabulate results on a number of benchmark datasets demonstrating that the proposed model delivers superior performance over state-of-the-art approaches.
Generalized Zero-Shot Learning (GZSL) targets recognizing new categories by learning transferable image representations. Existing methods find that, by aligning image representations with corresponding semantic labels, the semantic-aligned representations can be transferred to unseen categories. However, supervised by only seen category labels, the learned semantic knowledge is highly task-specific, which makes image representations biased towards seen categories. In this paper, we propose a novel Dual-Contrastive Embedding Network (DCEN) that simultaneously learns task-specific and task-independent knowledge via semantic alignment and instance discrimination. First, DCEN leverages task labels to cluster representations of the same semantic category by cross-modal contrastive learning and exploring semantic-visual complementarity. Besides task-specific knowledge, DCEN then introduces task-independent knowledge by attracting representations of different views of the same image and repelling representations of different images. Compared to high-level seen category supervision, this instance discrimination supervision encourages DCEN to capture low-level visual knowledge, which is less biased toward seen categories and alleviates the representation bias. Consequently, the task-specific and task-independent knowledge jointly make for transferable representations of DCEN, which obtains averaged 4.1% improvement on four public benchmarks.
Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a nodes relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا