No Arabic abstract
Urban scaling analysis, the study of how aggregated urban features vary with the population of an urban area, provides a promising framework for discovering commonalities across cities and uncovering dynamics shared by cities across time and space. Here, we use the urban scaling framework to study an important, but under-explored feature in this community - income inequality. We propose a new method to study the scaling of income distributions by analyzing total income scaling in population percentiles. We show that income in the least wealthy decile (10%) scales close to linearly with city population, while income in the most wealthy decile scale with a significantly superlinear exponent. In contrast to the superlinear scaling of total income with city population, this decile scaling illustrates that the benefits of larger cities are increasingly unequally distributed. For the poorest income deciles, cities have no positive effect over the null expectation of a linear increase. We repeat our analysis after adjusting income by housing cost, and find similar results. We then further analyze the shapes of income distributions. First, we find that mean, variance, skewness, and kurtosis of income distributions all increase with city size. Second, the Kullback-Leibler divergence between a citys income distribution and that of the largest city decreases with city population, suggesting the overall shape of income distribution shifts with city population. As most urban scaling theories consider densifying interactions within cities as the fundamental process leading to the superlinear increase of many features, our results suggest this effect is only seen in the upper deciles of the cities. Our finding encourages future work to consider heterogeneous models of interactions to form a more coherent understanding of urban scaling.
We examine a key component of human settlements mediating pollution and congestion, as well as economic development: roads and their expansion in cities, towns and villages. Our analysis of road networks in more than 850 US cities and rural counties since 1900 reveals significant variations in the structure of roads both within cities and across the conterminous US. Despite differences in the evolution of these networks, there are commonalities: newer roads tend to become less grid-like. These results persist across the rural-urban continuum and are therefore not just a product of urban growth. These findings illuminate the need for policies for urban and rural planning including the critical assessment of new development trends.
Is there a general economic pathway recapitulated by individual cities over and over? Identifying such evolution structure, if any, would inform models for the assessment, maintenance, and forecasting of urban sustainability and economic success as a quantitative baseline. This premise seems to contradict the existing body of empirical evidences for path-dependent growth shaping the unique history of individual cities. And yet, recent empirical evidences and theoretical models have amounted to the universal patterns, mostly size-dependent, thereby expressing many of urban quantities as a set of simple scaling laws. Here, we provide a mathematical framework to integrate repeated cross-sectional data, each of which freezes in time dimension, into a frame of reference for longitudinal evolution of individual cities in time. Using data of over 100 millions employment in thousand business categories between 1998 and 2013, we decompose each citys evolution into a pre-factor and relative changes to eliminate national and global effects. In this way, we show the longitudinal dynamics of individual cities recapitulate the observed cross-sectional regularity. Larger cities are not only scaled-
In March of this year, COVID-19 was declared a pandemic and it continues to threaten public health. This global health crisis imposes limitations on daily movements, which have deteriorated every sector in our society. Understanding public reactions to the virus and the non-pharmaceutical interventions should be of great help to fight COVID-19 in a strategic way. We aim to provide tangible evidence of the human mobility trends by comparing the day-by-day variations across the U.S. Large-scale public mobility at an aggregated level is observed by leveraging mobile device location data and the measures related to social distancing. Our study captures spatial and temporal heterogeneity as well as the sociodemographic variations regarding the pandemic propagation and the non-pharmaceutical interventions. All mobility metrics adapted capture decreased public movements after the national emergency declaration. The population staying home has increased in all states and becomes more stable after the stay-at-home order with a smaller range of fluctuation. There exists overall mobility heterogeneity between the income or population density groups. The public had been taking active responses, voluntarily staying home more, to the in-state confirmed cases while the stay-at-home orders stabilize the variations. The study suggests that the public mobility trends conform with the government message urging to stay home. We anticipate our data-driven analysis offers integrated perspectives and serves as evidence to raise public awareness and, consequently, reinforce the importance of social distancing while assisting policymakers.
The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing and travel reduction are recognized as essential non-pharmacologic approaches to control the spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patterns and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases. The results show that the mitigation effects of co-location reduction appear in the growth of weekly new cases with one week of delay. Furthermore, significant segregation is found among different county groups which are categorized based on numbers of cases. The results suggest that within-group co-location probabilities remain stable, and social distancing policies primarily resulted in reduced cross-group co-location probabilities (due to travel reduction from counties with large number of cases to counties with low numbers of cases). These findings could have important practical implications for local governments to inform their intervention measures for monitoring and reducing the spread of COVID-19, as well as for adoption in future pandemics. Public policy, economic forecasting, and epidemic modeling need to account for population co-location patterns in evaluating transmission risk of COVID-19 across counties.
We investigate the wealth evolution in a system of agents that exchange wealth through a disordered network in presence of an additive stochastic Gaussian noise. We show that the resulting wealth distribution is shaped by the degree distribution of the underlying network and in particular we verify that scale free networks generate distributions with power-law tails in the high-income region. Numerical simulations of wealth exchanges performed on two different kind of networks show the inner relation between the wealth distribution and the network properties and confirm the agreement with a self-consistent solution. We show that empirical data for the income distribution in Australia are qualitatively well described by our theoretical predictions.