Do you want to publish a course? Click here

Iterative Bounding MDPs: Learning Interpretable Policies via Non-Interpretable Methods

69   0   0.0 ( 0 )
 Added by Nicholay Topin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Current work in explainable reinforcement learning generally produces policies in the form of a decision tree over the state space. Such policies can be used for formal safety verification, agent behavior prediction, and manual inspection of important features. However, existing approaches fit a decision tree after training or use a custom learning procedure which is not compatible with new learning techniques, such as those which use neural networks. To address this limitation, we propose a novel Markov Decision Process (MDP) type for learning decision tree policies: Iterative Bounding MDPs (IBMDPs). An IBMDP is constructed around a base MDP so each IBMDP policy is guaranteed to correspond to a decision tree policy for the base MDP when using a method-agnostic masking procedure. Because of this decision tree equivalence, any function approximator can be used during training, including a neural network, while yielding a decision tree policy for the base MDP. We present the required masking procedure as well as a modified value update step which allows IBMDPs to be solved using existing algorithms. We apply this procedure to produce IBMDP variants of recent reinforcement learning methods. We empirically show the benefits of our approach by solving IBMDPs to produce decision tree policies for the base MDPs.

rate research

Read More

Recently, deep reinforcement learning (DRL) methods have achieved impressive performance on tasks in a variety of domains. However, neural network policies produced with DRL methods are not human-interpretable and often have difficulty generalizing to novel scenarios. To address these issues, prior works explore learning programmatic policies that are more interpretable and structured for generalization. Yet, these works either employ limited policy representations (e.g. decision trees, state machines, or predefined program templates) or require stronger supervision (e.g. input/output state pairs or expert demonstrations). We present a framework that instead learns to synthesize a program, which details the procedure to solve a task in a flexible and expressive manner, solely from reward signals. To alleviate the difficulty of learning to compose programs to induce the desired agent behavior from scratch, we propose to first learn a program embedding space that continuously parameterizes diverse behaviors in an unsupervised manner and then search over the learned program embedding space to yield a program that maximizes the return for a given task. Experimental results demonstrate that the proposed framework not only learns to reliably synthesize task-solving programs but also outperforms DRL and program synthesis baselines while producing interpretable and more generalizable policies. We also justify the necessity of the proposed two-stage learning scheme as well as analyze various methods for learning the program embedding.
We present a reinforcement learning framework, called Programmatically Interpretable Reinforcement Learning (PIRL), that is designed to generate interpretable and verifiable agent policies. Unlike the popular Deep Reinforcement Learning (DRL) paradigm, which represents policies by neural networks, PIRL represents policies using a high-level, domain-specific programming language. Such programmatic policies have the benefits of being more easily interpreted than neural networks, and being amenable to verification by symbolic methods. We propose a new method, called Neurally Directed Program Search (NDPS), for solving the challenging nonsmooth optimization problem of finding a programmatic policy with maximal reward. NDPS works by first learning a neural policy network using DRL, and then performing a local search over programmatic policies that seeks to minimize a distance from this neural oracle. We evaluate NDPS on the task of learning to drive a simulated car in the TORCS car-racing environment. We demonstrate that NDPS is able to discover human-readable policies that pass some significant performance bars. We also show that PIRL policies can have smoother trajectories, and can be more easily transferred to environments not encountered during training, than corresponding policies discovered by DRL.
Sequence classification is the task of predicting a class label given a sequence of observations. In many applications such as healthcare monitoring or intrusion detection, early classification is crucial to prompt intervention. In this work, we learn sequence classifiers that favour early classification from an evolving observation trace. While many state-of-the-art sequence classifiers are neural networks, and in particular LSTMs, our classifiers take the form of finite state automata and are learned via discrete optimization. Our automata-based classifiers are interpretable---supporting explanation, counterfactual reasoning, and human-in-the-loop modification---and have strong empirical performance. Experiments over a suite of goal recognition and behaviour classification datasets show our learned automata-based classifiers to have comparable test performance to LSTM-based classifiers, with the added advantage of being interpretable.
In an ever expanding set of research and application areas, deep neural networks (DNNs) set the bar for algorithm performance. However, depending upon additional constraints such as processing power and execution time limits, or requirements such as verifiable safety guarantees, it may not be feasible to actually use such high-performing DNNs in practice. Many techniques have been developed in recent years to compress or distill complex DNNs into smaller, faster or more understandable models and controllers. This work seeks to identify reduced models that not only preserve a desired performance level, but also, for example, succinctly explain the latent knowledge represented by a DNN. We illustrate the effectiveness of the proposed approach on the evaluation of decision tree variants and kernel machines in the context of benchmark reinforcement learning tasks.
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks. However, their accuracy comes at the cost of intelligibility: it is usually unclear how they make their decisions. This hinders their applicability to high stakes decision-making domains such as healthcare. We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models. NAMs learn a linear combination of neural networks that each attend to a single input feature. These networks are trained jointly and can learn arbitrarily complex relationships between their input feature and the output. Our experiments on regression and classification datasets show that NAMs are more accurate than widely used intelligible models such as logistic regression and shallow decision trees. They perform similarly to existing state-of-the-art generalized additive models in accuracy, but can be more easily applied to real-world problems.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا