Do you want to publish a course? Click here

Fronthaul Compression and Passive Beamforming Design for Intelligent Reflecting Surface-aided Cloud Radio Access Networks

112   0   0.0 ( 0 )
 Added by Yu Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This letter studies a cloud radio access network (C-RAN) with multiple intelligent reflecting surfaces (IRS) deployed between users and remote radio heads (RRH). Specifically, we consider the uplink transmission where each RRH quantizes the received signals from the users by either point-to-point compression or Wyner-Ziv compression and then transmits the quantization bits to the BBU pool through capacity limited fronthhual links. To maximize the uplink sum rate, we jointly optimize the passive beamformers of IRSs and the quantization noise covariance matrices of fronthoul compression. An joint fronthaul compression and passive beamforming design is proposed by exploiting the Arimoto-Blahut algorithm and semidefinte relaxation (SDR). Numerical results show the performance gain achieved by the proposed algorithm.



rate research

Read More

In this letter, we consider a multicast system where a single-antenna transmitter sends a common message to multiple single-antenna users, aided by an intelligent reflecting surface (IRS) equipped with $N$ passive reflecting elements. Prior works on IRS have mostly assumed the availability of channel state information (CSI) for designing its passive beamforming. However, the acquisition of CSI requires substantial training overhead that increases with $N$. In contrast, we propose in this letter a novel emph{random passive beamforming} scheme, where the IRS performs independent random reflection for $Qgeq 1$ times in each channel coherence interval without the need of CSI acquisition. For the proposed scheme, we first derive a closed-form approximation of the outage probability, based on which the optimal $Q$ with best outage performance can be efficiently obtained. Then, for the purpose of comparison, we derive a lower bound of the outage probability with traditional CSI-based passive beamforming. Numerical results show that a small $Q$ is preferred in the high-outage regime (or with high rate target) and the optimal $Q$ becomes larger as the outage probability decreases (or as the rate target decreases). Moreover, the proposed scheme significantly outperforms the CSI-based passive beamforming scheme with training overhead taken into consideration when $N$ and/or the number of users are large, thus offering a promising CSI-free alternative to existing CSI-based schemes.
Intelligent reflecting surfaces (IRSs) constitute passive devices, which are capable of adjusting the phase shifts of their reflected signals, and hence they are suitable for passive beamforming. In this paper, we conceive their design with the active beamforming action of multiple-input multipleoutput (MIMO) systems used at the access points (APs) for improving the beamforming gain, where both the APs and users are equipped with multiple antennas. Firstly, we decouple the optimization problem and design the active beamforming for a given IRS configuration. Then we transform the optimization problem of the IRS-based passive beamforming design into a tractable non-convex quadratically constrained quadratic program (QCQP). For solving the transformed problem, we give an approximate solution based on the technique of widely used semidefinite relaxation (SDR). We also propose a low-complexity iterative solution. We further prove that it can converge to a locally optimal value. Finally, considering the practical scenario of discrete phase shifts at the IRS, we give the quantization design for IRS elements on basis of the two solutions. Our simulation results demonstrate the superiority of the proposed solutions over the relevant benchmarks.
112 - Gui Zhou , Cunhua Pan , Hong Ren 2019
Perfect channel state information (CSI) is challenging to obtain due to the limited signal processing capability at the intelligent reflection surface (IRS). In this paper, we study the worst-case robust beamforming design for an IRS-aided multiuser multiple-input single-output (MU-MISO) system under the assumption of imperfect CSI. We aim for minimizing the transmit power while ensuring that the achievable rate of each user meets the quality of service (QoS) requirement for all possible channel error realizations. With unit-modulus and rate constraints, this problem is non-convex. The imperfect CSI further increases the difficulty of solving this problem. By using approximation and transformation techniques, we convert this problem into a squence of semidefinite programming (SDP) subproblems that can be efficiently solved. Numerical results show that the proposed robust beamforming design can guarantee the required QoS targets for all the users.
This paper investigates the passive beamforming and deployment design for an intelligent reflecting surface (IRS) aided full-duplex (FD) wireless system, where an FD access point (AP) communicates with an uplink (UL) user and a downlink (DL) user simultaneously over the same time-frequency dimension with the help of IRS. Under this setup, we consider three deployment cases: 1) two distributed IRSs placed near the UL user and DL user, respectively; 2) one centralized IRS placed near the DL user; 3) one centralized IRS placed near the UL user. In each case, we aim to minimize the weighted sum transmit power consumption of the AP and UL user by jointly optimizing their transmit power and the passive reflection coefficients at the IRS (or IRSs), subject to the UL and DL users rate constraints and the uni-modulus constraints on the IRS reflection coefficients. First, we analyze the minimum transmit power required in the IRS-aided FD system under each deployment scheme, and compare it with that of the corresponding half-duplex (HD) system. We show that the FD system outperforms its HD counterpart for all IRS deployment schemes, while the distributed deployment further outperforms the other two centralized deployment schemes. Next, we transform the challenging power minimization problem into an equivalent but more tractable form and propose an efficient algorithm to solve it based on the block coordinate descent (BCD) method. Finally, numerical results are presented to validate our analysis as well as the efficacy of the proposed passive beamforming design.
147 - Xidong Mu , Yuanwei Liu , Li Guo 2020
The fundamental intelligent reflecting surface (IRS) deployment problem is investigated for IRS-assisted networks, where one IRS is arranged to be deployed in a specific region for assisting the communication between an access point (AP) and multiple users. Specifically, three multiple access schemes are considered, namely non-orthogonal multiple access (NOMA), frequency division multiple access (FDMA), and time division multiple access (TDMA). The weighted sum rate maximization problem for joint optimization of the deployment location and the reflection coefficients of the IRS as well as the power allocation at the AP is formulated. The non-convex optimization problems obtained for NOMA and FDMA are solved by employing monotonic optimization and semidefinite relaxation to find a performance upper bound. The problem obtained for TDMA is optimally solved by leveraging the time-selective nature of the IRS. Furthermore, for all three multiple access schemes, low-complexity suboptimal algorithms are developed by exploiting alternating optimization and successive convex approximation techniques, where a local region optimization method is applied for optimizing the IRS deployment location. Numerical results are provided to show that: 1) near-optimal performance can be achieved by the proposed suboptimal algorithms; 2) asymmetric and symmetric IRS deployment strategies are preferable for NOMA and FDMA/TDMA, respectively; 3) the performance gain achieved with IRS can be significantly improved by optimizing the deployment location.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا