No Arabic abstract
In this paper, we first revisit the Koenker and Bassett variational approach to (univariate) quantile regression, emphasizing its link with latent factor representations and correlation maximization problems. We then review the multivariate extension due to Carlier et al. (2016, 2017) which relates vector quantile regression to an optimal transport problem with mean independence constraints. We introduce an entropic regularization of this problem, implement a gradient descent numerical method and illustrate its feasibility on univariate and bivariate examples.
Optimal transport has become part of the standard quantitative economics toolbox. It is the framework of choice to describe models of matching with transfers, but beyond that, it allows to: extend quantile regression; identify discrete choice models; provide new algorithms for computing the random coefficient logit model; and generalize the gravity model in trade. This paper offer a brief review of the basics of the theory, its applications to economics, and some extensions.
A majority portion of the slum people is involved in service sectors. The city dwellers are somehow dependent on the services of those people. Pure drinking water and hygiene is a significant concern in the slums. Because of the lack of these two items, the slum people are getting sick, which causes the interruption to their services. In addition, they can transmit the diseases they suffer from to the service receiver. With these aims, this study endeavors to explore the willingness to pay of the households who receive the services of the slum people using the mixed-method techniques. Under this technique, 265 households were surveyed through face-to-face interviews, and 10 KIIs were conducted with slum people. The studys findings suggest that the households showed their willingness to pay for the improvement of the water and sanitation facilities in the slums. However, the KIIs findings show that the slum people are not willing to pay for the improvement as they claim that government should finance the project of improving water and sanitation facilities in the slums.
This paper presents a model where intergenerational occupational mobility is the joint outcome of three main determinants: income incentives, equality of opportunity and changes in the composition of occupations. The model rationalizes the use of transition matrices to measure mobility, which allows for the identification of asymmetric mobility patterns and for the formulation of a specific mobility index for each determinant. Italian children born in 1940-1951 had a lower mobility with respect to those born after 1965. The steady mobility for children born after 1965, however, covers a lower structural mobility in favour of upper-middle classes and a higher downward mobility from upper-middle classes. Equality of opportunity was far from the perfection but steady for those born after 1965. Changes in income incentives instead played a major role, leading to a higher downward mobility from upper-middle classes and lower upward mobility from the lower class.
Bitcoin as well as other cryptocurrencies are all plagued by the impact from bifurcation. Since the marginal cost of bifurcation is theoretically zero, it causes the coin holders to doubt on the existence of the coins intrinsic value. This paper suggests a normative dual-value theory to assess the fundamental value of Bitcoin. We draw on the experience from the art market, where similar replication problems are prevalent. The idea is to decompose the total value of a cryptocurrency into two parts: one is its art value and the other is its use value. The tradeoff between these two values is also analyzed, which enlightens our proposal of an image coin for Bitcoin so as to elevate its use value without sacrificing its art value. To show the general validity of the dual-value theory, we also apply it to evaluate the prospects of four major cryptocurrencies. We find this framework is helpful for both the investors and the exchanges to examine a new coins value when it first appears in the market.
In Australia and beyond, journalism is reportedly an industry in crisis, a crisis exacerbated by COVID-19. However, the evidence revealing the crisis is often anecdotal or limited in scope. In this unprecedented longitudinal research, we draw on data from the Australian journalism jobs market from January 2012 until March 2020. Using Data Science and Machine Learning techniques, we analyse two distinct data sets: job advertisements (ads) data comprising 3,698 journalist job ads from a corpus of over 8 million Australian job ads; and official employment data from the Australian Bureau of Statistics. Having matched and analysed both sources, we address both the demand for and supply of journalists in Australia over this critical period. The data show that the crisis is real, but there are also surprises. Counter-intuitively, the number of journalism job ads in Australia rose from 2012 until 2016, before falling into decline. Less surprisingly, for the entire period studied the figures reveal extreme volatility, characterised by large and erratic fluctuations. The data also clearly show that COVID-19 has significantly worsened the crisis. We then tease out more granular findings, including: that there are now more women than men journalists in Australia, but that gender inequity is worsening, with women journalists getting younger and worse-paid just as men journalists are, on average, getting older and better-paid; that, despite the crisis besetting the industry, the demand for journalism skills has increased; and that, perhaps concerningly, the skills sought by journalism job ads increasingly include social media and generalist communications.